4 resultados para formed puree

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fruit purees, combined or not with polysaccharides, have been used in some studies to elaborate edible films. The present study was conducted to evaluate tensile properties and water vapor barrier of alginate-acerola puree films plasticized with corn syrup, and to study the influence of cellulose whiskers from different origins (cotton fiber or coconut husk fiber, the latter submitted to one- or multi-stage bleaching) on the film properties. The whiskers improved the overall tensile properties (except by elongation) and the water vapor barrier of the films. The films with coconut whiskers, even those submitted only to a one-stage bleaching, presented similar properties to those of films with cotton whiskers, despite the low compatibility between the matrix and the remaining lignin in coconut whiskers. This was probably ascribed to a counterbalancing effect of the higher aspect ratios of the coconut whiskers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biofilms formed by opportunistic yeasts serve as a persistent reservoir of infection and impair the treatment of fungal diseases. The aim of this study was to evaluate photodynamic inactivation (PDI) of biofilms formed by Candida spp. and the emerging pathogens Trichosporon mucoides and Kodamaea ohmeri by a cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H,31H-phthalocyanine (ZnPc). Biofilms formed by yeasts after 48 h in the bottom of 96-well microtiter plates were treated with the photosensitizer (ZnPc) and a GaAlAs laser (26.3 J cm(-2)). The biofilm cells were scraped off the well wall, homogenized, and seeded onto Sabouraud dextrose agar plates that were then incubated at 37A degrees C for 48 h. Efficient PDI of biofilms was verified by counting colony-forming units (CFU/ml), and the data were submitted to analysis of variance and the Tukey test (p < 0.05). All biofilms studied were susceptible to PDI with statistically significant differences. The strains of Candida genus were more resistant to PDI than emerging pathogens T. mucoides and K. ohmeri. A mean reduction of 0.45 log was achieved for Candida spp. biofilms, and a reduction of 0.85 and 0.84, were achieved for biofilms formed by T. mucoides and K. ohmeri, respectively. Therefore, PDI by treatment with nanostructured formulations cationic zinc 2,9,16,23- tetrakis (phenylthio)- 29H, 31H- phthalocyanine (ZnPc) and a laser reduced the number of cells in the biofilms formed by strains of C. albicans and non-Candida albicans as well the emerging pathogens T. mucoides and K. ohmeri.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the overall goals of industries is to use packages that do not cause environmental problems at disposal time, but that have the same properties as the conventional ones. The goal of this study is to synthesize edible films based on hydroxypropyl methylcellulose (HPMC) with guava puree and chitosan (CS) nanoparticles. This was divided into two stages, the first is the synthesis of chitosan nanoparticles and the second is the production of the films. For the nanoparticles, average size and zeta potential measurements were performed. The characterizations of mechanical and thermal properties, solubility and water vapor permeability tests were conducted in the films. It was observed that when the nanoparticles were added to HPMC and guava puree films, they improved their mechanical and thermal properties, as well as decreased the films solubility and permeability. The potential application of the films prepared would be in edible films with flavor and odor to extend the shelf life of products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.