3 resultados para forage species
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This experiment was carried out to analyze the tillering dynamics of the species Panicum maximum cv. Mombaca subjected to three post-grazing heights: residue of 30 cm (30); residue of 50 cm (50); and residue of 50 cm during spring and summer, lowered to 40 cm in the first fall season grazing and to 30 cm in the following grazing cycle, resuming to 50 cm after the first grazing of the following spring season (50-30). Grazings were initiated whenever the swards intercepted 95% of the incident light. The post-grazing heights were allocated in the experimental units in a completely randomized block design with three replications. The density of basal tillers did not vary between the residual heights evaluated. Swards managed with variable residual height (50-30) presented higher rates of appearance and mortality of basal tillers during the summer of 2007, indicating high tiller renovation. Regardless of the post-grazing height evaluated, lower rates of appearance of basal tillers were found in the spring of 2006. The stability index of guinea grass cv. Mombaca was close to 1.0 throughout the experimental period. Swards managed with variable post-grazing present structural changes able to improve the regrowth vigor, which may be important to maximize the use of the forage species in the production system.
Resumo:
Adult individuals of the island pitviper Bothrops insularis have a diet based on birds. We analysed bird species recorded in the gut of this snake and found that it relies on two out of 41 bird species recorded on the island. When present, these two prey species were among the most abundant passerine birds on the island. A few other migrant birds were very occasionally recorded as prey. A resident bird species (Troglodytes musculus) is the most abundant passerine on the island, but seems able to avoid predation by the viper. Bothrops insularis is most commonly found on the ground. However, during the abundance peak of the tyrannid passerine Elaenia chilensis on the island, more snakes were found on vegetation than on the ground. We suggest that one cause may be that these birds forage mostly on vegetation, and thus cause the snakes to search for prey on this arboreal substratum.
Resumo:
Warm-season grasses are economically important for cattle production in tropical regions and tools to aid in management and research on these forages would be highly beneficial both in research and the industry. This research was conducted to adapt the CROPGRO-Perennial Forage model to simulate growth of the tropical species guineagrass (Panicum maximum Jacq. cv. 'Tanzania') and to describe model adaptation for this species. To develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation, and partitioning during a 17-mo experiment with Tanzania guineagrass in Piracicaba, SP, Brazil. Compared with starting parameters for palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. 'Xaraes'], dormancy effects of the perennial forage model had to be minimized, partitioning to storage tissue or root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield was 6576 kg ha(-1), averaged across 11 regrowth cycles of 35 (summer) or 63 d (winter), with a RMSE of 494 kg ha(-1) (Willmott's index of agreement d = 0.985, simulated/observed ratio = 1.014). The model also gave good predictions against an independent data set, with similar RMSE, ratio, and d. The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of guineagrass and can be used to simulate growth.