4 resultados para flying vehicles
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The retaking of the ethanol program in the year 2003 as a fuel for light road transportation in Brazil through the introduction of flex fuel vehicles fleet was a good strategy to overcome the difficulties of the ethanol production sector and did work to increase its market share relative to gasoline. This process, however, may cause a future disequilibrium on the food production and on the refining oil derivates structure. In order to analyze the substitution process resultant of the competition between two opponents fighting for the same market, in this case the gasoline/ethanol substitution process, a method derived from the biomathematics based on the non-linear differential equations (NLDE) system is utilized. A brief description of the method is presented. Numerical adherence of the method to explain several substitution phenomena that occurred in the past is presented in the previous author`s paper, in which the urban gas pipeline system substitution of bottled LPG in the dwelling sector and the substitution of the urban diesel transportation fleet by compressed natural gas (CNG) buses is presented. The proposed method is particularly suitable for prospective analysis and scenarios assessment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A sample of 21 light duty vehicles powered by Otto cycle engines were tested on a chassis dynamometer to measure the exhaust emissions of nitrous oxide (N2O). The tests were performed at the Vehicle Emission Laboratory of CETESB (Environmental Company of the State of Sao Paulo) using the US-FTP-75 (Federal Test Procedure) driving cycle. The sample tested included passenger cars running on three types of fuels used in Brazil: gasohol, ethanol and CNG. The measurement of N2O was made using two methods: Non Dispersive InfraRed (NDIR) analyzer and Fourier Transform InfraRed spectroscopy (FTIR). Measurements of regulated pollutants were also made in order to establish correlations between N2O and NOx. The average N2O emission factors obtained by the NDIR method was 78 +/- 41 mg.km(-1) for vehicles running with gasohol, 73 +/- 45 mg.km(-1) for ethanol vehicles and 171 +/- 69 mg.km(-1) for CNG vehicles. Seventeen results using the FTIR method were also obtained. For gasohol vehicles the results showed a good agreement between the two methods, with an average emission factor of 68 +/- 41 mg.km(-1). The FTIR measurement results of N2O for ethanol and CNG vehicles were much lower than those obtained by the NDIR method. The emission factors were 17 +/- 10 mg.km(-1) and 33 +/- 17 mg.km(-1), respectively, possibly because of the interference of water vapor (present at a higher concentration in the exhaust gases of these vehicles) on measurements by the NDIR method.
Resumo:
Body size influences wing shape and associated muscles in flying animals which is a conspicuous phenomenon in insects, given their wide range in body size. Despite the significance of this, to date, no detailed study has been conducted across a group of species with similar biology allowing a look at specific relationship between body size and flying structures. Neotropical social vespids are a model group to study this problem as they are strong predators that rely heavily on flight while exhibiting a wide range in body size. In this paper we describe the variation in both wing shape, as wing planform, and mesosoma muscle size along the body size gradient of the Neotropical social wasps and discuss the potential factors affecting these changes. Analyses of 56 species were conducted using geometric morphometrics for the wings and lineal morphometrics for the body; independent contrast method regressions were used to correct for the phylogenetic effect. Smaller vespid species exhibit rounded wings, veins that are more concentrated in the proximal region, larger stigmata and the mesosoma is proportionally larger than in larger species. Meanwhile, larger species have more elongated wings, more distally extended venation, smaller stigmata and a proportionally smaller mesosoma. The differences in wing shape and other traits could be related to differences in flight demands caused by smaller and larger body sizes. Species around the extremes of body size distribution may invest more in flight muscle mass than species of intermediate sizes.
Resumo:
Most of the works published on hydrodynamic parameter identification of open-frame underwater vehicles focus their attention almost exclusively on good coherence between simulated and measured responses, giving less importance to the determination of “actual values” for hydrodynamic parameters. To gain insight into hydrodynamic parameter experimental identification of open-frame underwater vehicles, an experimental identification procedure is proposed here to determine parameters of uncoupled and coupled models. The identification procedure includes: (i) a prior estimation of actual values of the forces/torques applied to the vehicle, (ii) identification of drag parameters from constant velocity tests and (iii) identification of inertia and coupling parameters from oscillatory tests; at this stage, the estimated values of drag parameter obtained in item (ii) are used. The procedure proposed here was used to identify the hydrodynamic parameters of LAURS—an unmanned underwater vehicle developed at the University of São Paulo. The thruster–thruster and thruster–hull interactions and the advance velocity of the vehicle are shown to have a strong impact on the efficiency of thrusters appended to open-frame underwater vehicles, especially for high advance velocities. Results of tests with excitation in 1-DOF and 3-DOF are reported and discussed, showing the feasibility of the developed procedure.