7 resultados para finite-time attractiveness in probability
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
South American subterranean rodents (Ctenomys aff. knighti), commonly known as tuco-tucos, display nocturnal, wheel-running behavior under light-dark (LD) conditions, and free-running periods >24 h in constant darkness (DD). However, several reports in the field suggested that a substantial amount of activity occurs during daylight hours, leading us to question whether circadian entrainment in the laboratory accurately reflects behavior in natural conditions. We compared circadian patterns of locomotor activity in DD of animals previously entrained to full laboratory LD cycles (LD12:12) with those of animals that were trapped directly from the field. In both cases, activity onsets in DD immediately reflected the previous dark onset or sundown. Furthermore, freerunning periods upon release into DD were close to 24 h indicating aftereffects of prior entrainment, similarly in both conditions. No difference was detected in the phase of activity measured with and without access to a running wheel. However, when individuals were observed continuously during daylight hours in a semi-natural enclosure, they emerged above-ground on a daily basis. These day-time activities consisted of foraging and burrow maintenance, suggesting that the designation of this species as nocturnal might be inaccurate in the field. Our study of a solitary subterranean species suggests that the circadian clock is entrained similarly under field and laboratory conditions and that day-time activity expressed only in the field is required for foraging and may not be time-dictated by the circadian pacemaker.
Resumo:
Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter epsilon and experiences a transition from integrable (epsilon = 0) to nonintegrable (epsilon not equal 0). For small values of epsilon, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter epsilon increases and reaches a critical value epsilon(c), all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large epsilon, the survival probability decays exponentially when it turns into a slower decay as the control parameter epsilon is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.
Resumo:
In fluids and plasmas with zonal flow reversed shear, a peculiar kind of transport barrier appears in the shearless region, one that is associated with a proper route of transition to chaos. These barriers have been identified in symplectic nontwist maps that model such zonal flows. We use the so-called standard nontwist map, a paradigmatic example of nontwist systems, to analyze the parameter dependence of the transport through a broken shearless barrier. On varying a proper control parameter, we identify the onset of structures with high stickiness that give rise to an effective barrier near the broken shearless curve. Moreover, we show how these stickiness structures, and the concomitant transport reduction in the shearless region, are determined by a homoclinic tangle of the remaining dominant twin island chains. We use the finite-time rotation number, a recently proposed diagnostic, to identify transport barriers that separate different regions of stickiness. The identified barriers are comparable to those obtained by using finite-time Lyapunov exponents.
Resumo:
The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrodinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrodinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714352]
Resumo:
We study general properties of the Landau-gauge Gribov ghost form factor sigma(p(2)) for SU(N-c) Yang-Mills theories in the d-dimensional case. We find a qualitatively different behavior for d = 3, 4 with respect to the d = 2 case. In particular, considering any (sufficiently regular) gluon propagator D(p(2)) and the one-loop-corrected ghost propagator, we prove in the 2d case that the function sigma(p(2)) blows up in the infrared limit p -> 0 as -D(0) ln(p(2)). Thus, for d = 2, the no-pole condition sigma(p(2)) < 1 (for p(2) > 0) can be satisfied only if the gluon propagator vanishes at zero momentum, that is, D(0) = 0. On the contrary, in d = 3 and 4, sigma(p(2)) is finite also if D(0) > 0. The same results are obtained by evaluating the ghost propagator G(p(2)) explicitly at one loop, using fitting forms for D(p(2)) that describe well the numerical data of the gluon propagator in two, three and four space-time dimensions in the SU(2) case. These evaluations also show that, if one considers the coupling constant g(2) as a free parameter, the ghost propagator admits a one-parameter family of behaviors (labeled by g(2)), in agreement with previous works by Boucaud et al. In this case the condition sigma(0) <= 1 implies g(2) <= g(c)(2), where g(c)(2) is a "critical" value. Moreover, a freelike ghost propagator in the infrared limit is obtained for any value of g(2) smaller than g(c)(2), while for g(2) = g(c)(2) one finds an infrared-enhanced ghost propagator. Finally, we analyze the Dyson-Schwinger equation for sigma(p(2)) and show that, for infrared-finite ghost-gluon vertices, one can bound the ghost form factor sigma(p(2)). Using these bounds we find again that only in the d = 2 case does one need to impose D(0) = 0 in order to satisfy the no-pole condition. The d = 2 result is also supported by an analysis of the Dyson-Schwinger equation using a spectral representation for the ghost propagator. Thus, if the no-pole condition is imposed, solving the d = 2 Dyson-Schwinger equations cannot lead to a massive behavior for the gluon propagator. These results apply to any Gribov copy inside the so-called first Gribov horizon; i.e., the 2d result D(0) = 0 is not affected by Gribov noise. These findings are also in agreement with lattice data.
Resumo:
In this paper we consider an equilibrium last-passage percolation model on an environment given by a compound two-dimensional Poisson process. We prove an L-2-formula relating the initial measure with the last-passage percolation time. This formula turns out to be a useful tool to analyze the fluctuations of the last-passage times along non-characteristic directions.
Resumo:
Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provade a very Complexity of inferences in polytree-shaped semi-qualitative probabilistic networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that interferences can be performed in time linear in the number of nodes if there is a single observed node. Because our proof is construtive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynominal-time algorithm for SQPn. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.