4 resultados para feature inspection method

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The strength and durability of materials produced from aggregates (e.g., concrete bricks, concrete, and ballast) are critically affected by the weathering of the particles, which is closely related to their mineral composition. It is possible to infer the degree of weathering from visual features derived from the surface of the aggregates. By using sound pattern recognition methods, this study shows that the characterization of the visual texture of particles, performed by using texture-related features of gray scale images, allows the effective differentiation between weathered and nonweathered aggregates. The selection of the most discriminative features is also performed by taking into account a feature ranking method. The evaluation of the methodology in the presence of noise suggests that it can be used in stone quarries for automatic detection of weathered materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The biorhythm of serum uric acid was evaluated in a large sample of a clinical laboratory database by spectral analysis and the influence of the gender and age on uric acid variability. Methods: Serum uric acid values were extracted from a large database of a clinical laboratory from May 2000 to August 2006. Outlier values were excluded from the analysis and the remaining data (n = 73,925) were grouped by gender and age ranges. Rhythm components were obtained by the Lomb Scargle method and Cosinor analysis. Results: Serum uric acid was higher in men than in women older than 13 years (p<0.05). Compared with 0-12 year group, uric acid increased in men but not in women older than 13 years (p<0.05). Circannual (12 months) and transyear (17 months) rhythm components were detected, but they were significant only in adult individuals (>26 years, p<0.05). Cosinor analysis showed that midline estimating statistic of rhythm (MESOR) values were higher in men (range: 353-368 mu mol/L) than in women (range: 240-278 mu mol/L; p<0.05), independent of the age and rhythm component. The extent of predictable change within a cycle, approximated by the double amplitude, represented up to 20% of the corresponding MESOR. Conclusions: Serum uric acid biorhythm is dependent on gender and age and it may have relevant influence on preanalytical variability of clinical laboratory results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background One goal of gene expression profiling is to identify signature genes that robustly distinguish different types or grades of tumors. Several tumor classifiers based on expression profiling have been proposed using microarray technique. Due to important differences in the probabilistic models of microarray and SAGE technologies, it is important to develop suitable techniques to select specific genes from SAGE measurements. Results A new framework to select specific genes that distinguish different biological states based on the analysis of SAGE data is proposed. The new framework applies the bolstered error for the identification of strong genes that separate the biological states in a feature space defined by the gene expression of a training set. Credibility intervals defined from a probabilistic model of SAGE measurements are used to identify the genes that distinguish the different states with more reliability among all gene groups selected by the strong genes method. A score taking into account the credibility and the bolstered error values in order to rank the groups of considered genes is proposed. Results obtained using SAGE data from gliomas are presented, thus corroborating the introduced methodology. Conclusion The model representing counting data, such as SAGE, provides additional statistical information that allows a more robust analysis. The additional statistical information provided by the probabilistic model is incorporated in the methodology described in the paper. The introduced method is suitable to identify signature genes that lead to a good separation of the biological states using SAGE and may be adapted for other counting methods such as Massive Parallel Signature Sequencing (MPSS) or the recent Sequencing-By-Synthesis (SBS) technique. Some of such genes identified by the proposed method may be useful to generate classifiers.