6 resultados para excipients
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A simple and sensitive analytical method for simultaneous determination of anastrozole, bicalutamide, and tamoxifen as well as their synthetic impurities, anastrozole pentamethyl, bicalutamide 3-fluoro-isomer, and tamoxifen e-isomer, was developed and validated by using high performance liquid chromatography (HPLC). The separation was achieved on a Symmetry (R) C-8 column (100 x 4.6 mm i.d., 3.5 mu m) at room temperature (+/- 24 degrees C), with a mobile phase consisting of acetonitrile/water containing 0.18% N,N dimethyloctylamine and pH adjusted to 3.0 with orthophosphoric acid (46.5/53.5, v/v) at a flow rate of 1.0 mL min(-1) within 20 min. The detection was made at a wavelength of 270 nm by using ultraviolet (UV) detector. No interference peaks from excipients and relative retention time indicated the specificity of the method. The calibration curve showed correlation coefficients (r) > 0.99 calculated by linear regression and analysis of variance (ANOVA). The limit of detection (LOD) and limit of quantitation (LOQ), respectively, were 2.2 and 6.7 mu g mL(-1) for anastrozole, 2.61 and 8.72 mu g mL(-1) for bicalutamide, 2.0 and 6.7 mu g mL(-1) for tamoxifen, 0.06 and 0.22 mu g mL(-1) for anastrozole pentamethyl, 0.02 and 0.07 mu g mL(-1) for bicalutamide 3-fluoro-isomer, and 0.002 and 0.007 mu g mL(-1) for tamoxifen e-isomer. Intraday and interday relative standard deviations (RSDs) were <2.0% (drugs) and <10% (degradation products) as well as the comparison between two different analysts, which were calculated by f test. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The effects of drying air inlet temperature (IT) and concentration of Aerosil 200 (C-A) on several properties of spray-dried Apeiba tibourbou extracts were investigated following a 3(2) full factorial design. Powder recovery varied from 9.83 to 46.95% and dried products showed moisture contents below 7%. Although the spray-dried products lost some of their polyphenols, they still present excellent antioxidant activity, opening perspectives for its use to medicinal purpose. C-A exerted a key role on the properties of spray-dried extracts, while IT did not present a significative influence. Aerosil (R) 200 proved to be an interesting alternative as an excipient for the drying of the herbal extract, even at intermediate concentrations such as 15%. The best combination of conditions to use for obtaining dry A. tibourbou extracts with adequate physicochemical and functional properties involves an IT of 100 degrees C and a C-A of 15%.
Resumo:
In this study, fluid bed granulation was applied to improve the dissolution of nimodipine and spironolactone, two very poorly water-soluble drugs. Granules were obtained with different amounts of sodium dodecyl sulfate and croscarmellose sodium and then compressed into tablets. The dissolution behavior of the tablets was studied by comparing their dissolution profiles and dissolution efficiency with those obtained from physical mixtures of the drug and excipients subjected to similar conditions. Statistical analysis of the results demonstrated that the fluid bed granulation process improves the dissolution efficiency of both nimodipine and spironolactone tablets. The addition of either the surfactant or the disintegrant employed in the study proved to have a lower impact on this improvement in dissolution than the fluid bed granulation process.
Resumo:
Literature data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate-release (IR) solid oral dosage forms containing stavudine (d4T) are reviewed. According to Biopharmaceutics Classification System (BCS), d4T can be assigned to BCS class I. No problems with BE of IR d4T formulations containing different excipients and produced by different manufacturing methods have been reported and, hence, the risk of bioinequivalence caused by these factors appears to be low. Furthermore, d4T has a wide therapeutic index. It is concluded that a biowaiver is appropriate for IR solid oral dosage forms containing d4T as the single active pharmaceutical ingredient (API) provided that (a) the test product contains only excipients present in the IR d4T drug products that have been approved in a number of countries for the same dosage form, and (b) both test product and its comparator are either very rapidly dissolving or rapidly dissolving with similarity of dissolution profiles demonstrated at pH 1.2, 4.5, and 6.8. (c) 2011 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:1016, 2012
Resumo:
Dapsone (DAP) is a synthetic sulfone drug with bacteriostatic activity, mainly against Mycobacterium leprae. In this study we have investigated the interactions of DAP with cyclodextrins, 2-hydroxypropyl-beta-cyclodextrin (HP beta CD) and beta-cyclodextrin (beta CD), in the presence and absence of water-soluble polymers, in order to improve its solubility and bioavailability. Solid systems DAP/HP beta CD and DAP/beta CD, in the presence or absence of polyvinylpyrrolidone (PVP K30) or hydroxypropyl methylcellulose (HPMC), were prepared. The binary and ternary systems were evaluated and characterized by SEM, DSC, XRD and NMR analysis as well as phase solubility assays, in order to investigate the interactions between DAP and the excipients in aqueous solution. This study revealed that inclusion complexes of DAP and cyclodextrins (HP beta CD and beta CD) can be produced in order to improve DAP solubility and bioavailability in the presence or absence of polymers (PVP K30 and HPMC). The more stable inclusion complex was obtained with HP beta CD, and consequently HP beta CD was more efficient in improving DAP solubility than beta CD, and the addition of polymers had no influence on DAP solubility or on the stability of the DAP/CDs complexes.
Resumo:
In this study, fluid bed granulation was applied to improve the dissolution of nimodipine and spironolactone, two very poorly water-soluble drugs. Granules were obtained with different amounts of sodium dodecyl sulfate and croscarmellose sodium and then compressed into tablets. The dissolution behavior of the tablets was studied by comparing their dissolution profiles and dissolution efficiency with those obtained from physical mixtures of the drug and excipients subjected to similar conditions. Statistical analysis of the results demonstrated that the fluid bed granulation process improves the dissolution efficiency of both nimodipine and spironolactone tablets. The addition of either the surfactant or the disintegrant employed in the study proved to have a lower impact on this improvement in dissolution than the fluid bed granulation process.