4 resultados para evaluation designs
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Purpose: Bacterial leakage along the implant-abutment interface, with consequent species harboring the inner parts of two-part dental implant systems, has been reported in the literature. The aim of this in vitro study was to evaluate bacterial leakage from human saliva to the internal part of the implants along the implant-abutment interface under loaded and unloaded conditions using DNA Checkerboard. Materials and Methods: Sixty denial implants-20 each of external-hexagon, internal-hexagon, and Morse cone-connection designs-and their conical abutments were used in this study. Each group was subdivided into two groups of 10 loaded and 10 unloaded implants. The assemblies were immersed in human saliva and either (1) loaded with 500,000 cycles at 120 N (experimental group) or (2) incubated in static conditions for 7 days at 35 degrees C (unloaded control group). Results: Microorganisms were found in the internal surfaces of all types of connections. The Morse cone connection presented the lowest count of microorganisms in both the unloaded and loaded groups. Loaded implants presented with higher counts of microorganisms than unloaded implants for external- and internal-hex connections. Conclusion: Bacterial species from human saliva may penetrate along the implant-abutment interface under both unloaded and loaded conditions for all connections evaluated. Morse cone-connection implants showed the lowest counts of microorganisms for both conditions. External- and internal-hex implants showed a higher incidence of bacteria and higher bacterial counts after simulated loading. INT J ORAL MAXILLOFAC IMPLANTS 2012;27:551-560.
Resumo:
The aim of this research was to test the hypothesis that treatment with intra-oral appliances with different occlusal designs was beneficial in the management of pain of masticatory muscles compared with a control group. A total of 51 patients were analysed according to the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) to obtain the diagnosis of masticatory myofascial pain (MMP). The sample was then randomly divided into three groups: group I (n = 21) wore a full coverage acrylic stabilisation occlusal splint; group II (n = 16) wore an anterior device nociceptive trigeminal inhibitory (NTI) system; and group III (n = 14) only received counselling for behavioural changes and self-care (the control group). The first two groups also received counselling. Follow-ups were performed after 2 and 6 weeks and 3 months. In these sessions, patients were evaluated by means of a visual analogue scale (VAS) and pressure pain threshold (PPT) of the masticatory muscles. Possible adverse effects were also recorded, such as discomfort while using the appliance and occlusal changes. The results were analysed with KruskalWallis, anova, Tukeys and Friedman tests, with a significance level of 5%. Group I showed improvement in the reported pain at the first follow-up (2 weeks), whereas for groups II and III, this progress was detected only after 6 weeks and 3 months, respectively. The PPT values did not change significantly. It was concluded that behavioural changes are effective in the management of pain in MMP patients. However, the simultaneous use of occlusal devices appears to produce an earlier improvement.
Resumo:
Objectives: Because the mechanical behavior of the implant-abutment system is critical for the longevity of implant-supported reconstructions, this study evaluated the fatigue reliability of different implant-abutment systems used as single-unit crowns and their failure modes. Methods and Materials: Sixty-three Ti-6Al-4V implants were divided in 3 groups: Replace Select (RS); IC-IMP Osseotite; and Unitite were restored with their respective abutments. Anatomically correct central incisor metal crowns were cemented and subjected to separate single load to failure tests and step-stress accelerated life testing (n = 18). A master Weibull curve and reliability for a mission of 50,000 cycles at 200 N were calculated. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The load at failure mean values during step-stress accelerated life testing were 348.14 N for RS, 324.07 N for Osseotite, and 321.29 N for the Unitite systems. No differences in reliability levels were detected between systems, and only the RS system mechanical failures were shown to be accelerated by damage accumulation. Failure modes differed between systems. Conclusions: The 3 evaluated systems did not present significantly different reliability; however, failure modes were different. (Implant Dent 2012;21:67-71)
Resumo:
Purpose: Implant-abutment connections still present failures in the oral cavity due to the loosening of mechanical integrity by detorque and corrosion of the abutment screws. The objective of this study was to evaluate the detorque of dental abutment screws before and after immersion in fluoridated solutions. Materials and Methods: Five commercial implant-abutment assemblies were assessed in this investigation: (C) Conex˜aoR , (E) EmfilsR , (I) INPR , (S) SINR , and (T) Titanium FixR . The implants were embedded in an acrylic resin and then placed in a holding device. The abutments were first connected to the implants and torqued to 20Ncmusing a handheld torque meter. The detorque values of the abutments were evaluated after 10 minutes. After applying a second torque of 20 Ncm, implant-abutment assemblies were withdrawn every 3 hours for 12 hours in a fluoridated solution over a period of 90 days. After that period, detorque of the abutments was examined. Scanning electronicmicroscopy (SEM) associated to energy dispersive spectroscopy (EDS) was applied to inspect the surfaces of abutments. Results: Detorque values of systems C, E, and I immersed in the fluoridated solution were significantly higher than those of the initial detorque. ANOVA demonstrated no significant differences in detorque values between designs S and T. Signs of localized corrosion could not be detected by SEM although chemical analysis by EDS showed the presence of elements involved in corrosive processes. Conclusion: An increase of detorque values recorded on abutments after immersion in fluoridated artificial saliva solutions was noticed in this study. Regarding chemical analysis, such an increase of detorque can result from a corrosion layer formed between metallic surfaces at static contact in the implant-abutment joint during immersion in the fluoridated solutions.