2 resultados para engineering students

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of a pedagogical strategy implemented at the University of Sao Paulo at Sao Carlos are presented and discussed. The initiative was conducted in a transportation course offered to Civil Engineering students. The approach is a combination of problem-based learning and project-based learning (PBL) and blended-learning (B-learning). Starting in 2006, a different problem was introduced every year. From 2009 on, however, the problem-based learning concept was expanded to project-based learning. The performance of the students was analyzed using the following elements: (1) grades in course activities; (2) answers from a questionnaire designed for course evaluation; and (3) cognitive maps made to assess the effects of PBL through the comparison of the responses provided by the students involved and those not involved in the experiment. The results showed positive aspects of the method, such as a strong involvement of several students with the subject. A gradual increase in the average scores obtained by the students in the project activities (from 6.77 in 2006 to 8.24 in 2009) was concomitant with a better evaluation of these activities and of the course as a whole (90 and 97% of options "Good" or "Very good" in 2009, respectively). A growing interest in the field of transportation engineering as an alternative for further studies was also noticed. DOI: 10.1061/(ASCE)EI.1943-5541.0000115. (C) 2012 American Society of Civil Engineers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents an analysis of the capacity of design centric methodologies to prepare engineering students to succeed in the market. Gaps are brainstormed and analyzed with reference to their importance. Reasons that may lead the newly graduated engineers not to succeed right from the beginning of their professional lives have also been evaluated. A comparison among the two subjects above was prepared, reviewed and analyzed. The influence of multidisciplinary, multicultural and complex environmental influences created in the current global business era is taken into account. The industry requirements in terms of what they expect to 'receive' from their engineers are evaluated and compared to the remaining of the study above. An innovative approach to current engineering education that utilizes traditional design-centric methodologies is then proposed, aggregating new disciplines to supplement the traditional engineering education. The solution encompasses the inclusion of disciplines from Human Sciences and Emotional Intelligence fields willing to better prepare the engineer of tomorrow to work in a multidisciplinary, globalized, complex and team working environment. A pilot implementation of such an approach is reviewed and conclusions are drawn from this educational project.