6 resultados para energy simulation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to investigate energy system contributions and energy costs in combat situations. The sample consisted of 10 male taekwondo athletes (age: 21 +/- 6 years old; height: 176.2 +/- 5.3 cm; body mass: 67.2 +/- 8.9 kg) who compete at the national or international level. To estimate the energy contributions, and total energy cost of the fights, athletes performed a simulated competition consisting of three 2 min rounds with a 1 min recovery between each round. The combats were filmed to quantify the actual time spent fighting in each round. The contribution of the aerobic (WAER), anaerobic alactic (W-PCR), and anaerobic lactic (Wleft perpendicularLA-right perpendicular) energy systems was estimated through the measurement of oxygen consumption during the activity, the fast component of excess post-exercise oxygen consumption, and the change in blood lactate concentration in each round, respectively. The mean ratio of high intensity actions to moments of low intensity (steps and pauses) was similar to 1:7. The W-AER, W-PCR and (Wleft perpendicularLA-right perpendicular) system contributions were estimated as 120 +/- 22 kJ (66 +/- 6%), 54 +/- 21 kJ (30 +/- 6%), 8.5 kJ (4 +/- 2%), respectively. Thus, training sessions should be directed mainly to the improvement of the anaerobic alactic system (responsible by the highintensity actions), and of the aerobic system (responsible by the recovery process between high- intensity actions).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluates the spatial distribution of normalised rates of droplet breakage and droplet coalescence in liquidliquid dispersions maintained in agitated tanks at operation conditions normally used to perform suspension polymerisation reactions. Particularly, simulations are performed with multiphase computational fluid dynamics (CFD) models to represent the flow field in liquidliquid styrene suspension polymerisation reactors for the first time. CFD tools are used first to compute the spatial distribution of the turbulent energy dissipation rates (e) inside the reaction vessel; afterwards, normalised rates of droplet breakage and particle coalescence are computed as functions of e. Surprisingly, multiphase simulations showed that the rates of energy dissipation can be very high near the free vortex surfaces, which has been completely neglected in previous works. The obtained results indicate the existence of extremely large energy dissipation gradients inside the vessel, so that particle breakage occurs primarily in very small regions that surround the impeller and the free vortex surface, while particle coalescence takes place in the liquid bulk. As a consequence, particle breakage should be regarded as an independent source term or a boundary phenomenon. Based on the obtained results, it can be very difficult to justify the use of isotropic assumptions to formulate particle population balances in similar systems, even when multiple compartment models are used to describe the fluid dynamic behaviour of the agitated vessel. (C) 2011 Canadian Society for Chemical Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extrapolation chamber is a parallel-plate ionization chamber that allows variation of its air-cavity volume. In this work, an experimental study and MCNP-4C Monte Carlo code simulations of an ionization chamber designed and constructed at the Calibration Laboratory at IFEN to be used as a secondary dosimetry standard for low-energy X-rays are reported. The results obtained were within the international recommendations, and the simulations showed that the components of the extrapolation chamber may influence its response up to 11.0%. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a continuous search for theoretical methods that are able to describe the effects of the liquid environment on molecular systems. Different methods emphasize different aspects, and the treatment of both the local and bulk properties is still a great challenge. In this work, the electronic properties of a water molecule in liquid environment is studied by performing a relaxation of the geometry and electronic distribution using the free energy gradient method. This is made using a series of steps in each of which we run a purely molecular mechanical (MM) Monte Carlo Metropolis simulation of liquid water and subsequently perform a quantum mechanical/molecular mechanical (QM/MM) calculation of the ensemble averages of the charge distribution, atomic forces, and second derivatives. The MP2/aug-cc-pV5Z level is used to describe the electronic properties of the QM water. B3LYP with specially designed basis functions are used for the magnetic properties. Very good agreement is found for the local properties of water, such as geometry, vibrational frequencies, dipole moment, dipole polarizability, chemical shift, and spin-spin coupling constants. The very good performance of the free energy method combined with a QM/MM approach along with the possible limitations are briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suramin is a polysulphonated naphthylurea with inhibitory activity against the human secreted group IIA phospholipase A(2) (hsPLA2GIIA), and we have investigated suramin binding to recombinant hsPLA2GIIA using site-directed mutagenesis and molecular dynamics (MD) simulations. The changes in suramin binding affinity of 13 cationic residue mutants of the hsPLA2GIIA was strongly correlated with alterations in the inhibition of membrane damaging activity of the protein. Suramin binding to hsPLA2GIIA was also studied by MD simulations, which demonstrated that altered intermolecular potential energy of the suramin/mutant complexes was a reliable indicator of affinity change. Although residues in the C-terminal region play a major role in the stabilization of the hsPLA2GIIA/suramin complex, attractive and repulsive hydrophobic and electrostatic interactions with residues throughout the protein together with the adoption of a bent suramin conformation, all contribute to the stability of the complex. Analysis of the h5PLA2GIIA/suramin interactions allows the prediction of the properties of suramin analogues with improved binding and higher affinities which may be candidates for novel phospholipase A(2) inhibitors. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pulmonary crackling and the formation of liquid bridges are problems that for centuries have been attracting the attention of scientists. In order to study these phenomena, it was developed a canonical cubic lattice-gas­ like model to explain the rupture of liquid bridges in lung airways [A. Alencar et al., 2006, PRE]. Here, we further develop this model and add entropy analysis to study thermodynamic properties, such as free energy and force. The simulations were performed using the Monte Carlo method with Metropolis algorithm. The exchange between gas and liquid particles were performed randomly according to the Kawasaki dynamics and weighted by the Boltzmann factor. Each particle, which can be solid (s), liquid (l) or gas (g), has 26 neighbors: 6 + 12 + 8, with distances 1, √2 and √3, respectively. The energy of a lattice's site m is calculated by the following expression: Em = ∑k=126 Ji(m)j(k) in witch (i, j) = g, l or s. Specifically, it was studied the surface free energy of the liquid bridge, trapped between two planes, when its height is changed. For that, was considered two methods. First, just the internal energy was calculated. Then was considered the entropy. It was fond no difference in the surface free energy between this two methods. We calculate the liquid bridge force between the two planes using the numerical surface free energy. This force is strong for small height, and decreases as the distance between the two planes, height, is increased. The liquid-gas system was also characterized studying the variation of internal energy and heat capacity with the temperature. For that, was performed simulation with the same proportion of liquid and gas particle, but different lattice size. The scale of the liquid-gas system was also studied, for low temperature, using different values to the interaction Jij.