3 resultados para electrochemical processes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Hydrogen peroxide is a powerful oxidant that finds application in several areas, but most particularly in the treatment of industrial wastewaters. The aim of the present study was to investigate the effects of applied potential and electrolyte flow conditions on the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor with a gas diffusion electrode (GDE). The electrolyses were performed in an aqueous acidic medium using a GDE constructed with conductive black graphite and polytetrafluoroethylene (80:20 w/w). Under laminar flow conditions (flow rate = 50 L/h), hydrogen peroxide was formed in a maximum yield of 414 mg/L after 2 h at -2.25 V vs Pt //Ag/AgCl (global rate constant = 3.1 mg/(L min); energy consumption = 22.1 kWh/kg). Under turbulent flow (300 L/h), the maximum yield obtained was 294 mg/L after 2 h at -1.75 V vs Pt//Ag/AgCl (global rate constant = 2.5 mg/ (L min); energy consumption = 30.1 kWh/kg).
Resumo:
The thiadiazolylurea derivative tebuthiuron (TBH) is commonly used as an herbicide even though it is highly toxic to humans. While various processes have been proposed for the removal of organic contaminants of this type from wastewater, electrochemical degradation has shown particular promise. The aim of the present study was to investigate the electrochemical degradation of TBH using anodes comprising boron-doped (5000 and 30000 ppm) diamond (BDD) films deposited onto Ti substrates operated at current densities in the range 10-200 mA cm(-2). Both anodes removed TBH following a similar pseudo first-order reaction kinetics with k(ap)p close to 3.2 x 10(-2) min(-1). The maximum mineralization efficiency obtained was 80%. High-pressure liquid chromatography with UV-VIS detection established that both anodes degraded TBH via similar intermediates. Ion chromatography revealed that increasing concentrations of nitrate ions (up to 0.9 ppm) were formed with increasing current density, while the formation of nitrite ions was observed with both anodes at current densities >= 150 mA cm(-2). The BDD film prepared at the lower doping level (5000 ppm) was more efficient in degrading TBH than its more highly doped counterpart. This unexpected finding may be explained in terms of the quantity of impurities incorporated into the diamond lattice during chemical vapor deposition. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Full validation of the electrochemical mechanisms so far postulated as driving force of electric field-assisted non-spontaneous crystallization development in given glasses has suffered experimental restrictions. In this work, we looked into origin of this phenomenon in lead oxyfluoroborate glasses, resulting in beta-PbF2 growth even below the corresponding glass transition temperatures, through achieving a systematic study of not only Pt,Ag/Glass/Ag,Pt- but also Pt,Ag/Glass/YSZ:PbF2/Ag,Pt-type cells, where YSZ:PbF2 represents a two-phase system (formed by Y2O3-doped ZrO2 and PbF2). It is demonstrated that crystallization induction in these glasses involves Pb2+ ions reduction at the cathode, the phenomenon being, however, confirmed only when the F- ions were simultaneously also able to reach the anode for oxidation, after assuring either a direct glass-anode contact or percolation pathways for free fluoride migration across the YSZ:PbF2 mixtures. A further support of this account is that the electrochemically induced beta-PbF2 phase crystallizes showing ramified-like microstructure morphology that arises, accordingly, from development of electroconvective diffusion processes under electric field action.