5 resultados para eddy-current

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este artigo foi escrito para mostrar aos alunos de graduação em Física e Engenharia como estimar as correntes de Foucault. Inicialmente fazemos uma breve análise das condições de contorno entre dois meios com diferentes parâmetros ε, μ e σ, que devem ser obedecidas tanto por campos eletromagnéticos estáticos quanto dependentes do tempo. Em seguida, usando as equações de Maxwell calculamos as “correntes de Foucault”, ou “eddy currents”, que surgem em um condutor plano metálico (paramagnético ou diamagnético) quando sobre ele é aplicado um campo magnético B(t) variável no tempo, gerado por um solenoide longo de seção reta circular.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Brazil Current (BC) originates with the arrival and bifurcation of the southernmost branch of the South Equatorial Current (sSEC) between 10-20 degrees S. Previous climatological studies showed a stratified sSEC bifurcation and that the resulting southern branch formed a shallow BC - a weak western boundary current. The analysis of three recent synoptic surveys and global model outputs challenge the description of a continuous BC. The sSEC bifurcation signal near the continental margin was unclear in the analyses, and the velocity fields were dominated by mesoscale eddies. Recurrent anticyclones that seemed to be related to the meandering BC led us to construct a picture of a flow strongly influenced by topography and probably very unstable. Given this new emerging scenario, we hypothesize that the Brazil Current is eddy-dominated to the north of 20 degrees S. Citation: Soutelino, R. G., I. C. A. da Silveira, A. Gangopadhyay, and J. A. Miranda (2011), Is the Brazil Current eddy-dominated to the north of 20 S?, Geophys. Res. Lett., 38, L03607, doi:10.1029/2010GL046276.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The regional ocean off southeast Brazil (20 degrees S-28 degrees S) is known as a current-eddy-upwelling region. The proximity of the Brazil Current to the coast in the Cape Sao Tome vicinities, as well as of its quasi-stationary unstable meanders, suggests the possibility of background eddy-induced upwelling. Such phenomenon can intensify the prevalent coastal upwelling due to wind and topographic effects. In this paper, with the help of a numerical simulation, we provide evidence that eddy-induced upwelling in the absence of wind is possible in this region. The simulation was conducted with a regional configuration of the 3-D Princeton Ocean Model initialized by a feature-based implementation of the Brazil Current and Cape Frio eddy, blended with climatology. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that the vertical structure of the Brazil Current (BC)-Intermediate Western Boundary Current (IWBC) System is dominated by the first baroclinic mode at 22 degrees S-23 degrees S. In this work, we employed the Miami Isopycnic Coordinate Ocean Model to investigate whether the rich mesoscale activity of this current system, between 20 degrees S and 28 degrees S, is reproduced by a two-layer approximation of its vertical structure. The model results showed cyclonic and anticyclonic meanders propagating southwestward along the current axis, resembling the dynamical pattern of Rossby waves superposed on a mean flow. Analysis of the upper layer zonal velocity component, using a space-time diagram, revealed a dominant wavelength of about 450 km and phase velocity of about 0.20 ms(-1) southwestward. The results also showed that the eddy-like structures slowly grew in amplitude as they moved downstream. Despite the simplified design of the numerical experiments conducted here, these results compared favorably with observations and seem to indicate that weakly unstable long baroclinic waves are responsible for most of the variability observed in the BC-IWBC system. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporally-growing frontal meandering and occasional eddy-shedding is observed in the Brazil Current (BC) as it flows adjacent to the Brazilian Coast. No study of the dynamics of this phenomenon has been conducted to date in the region between 22 degrees S and 25 degrees S. Within this latitude range, the flow over the intermediate continental slope is marked by a current inversion at a depth that is associated with the Intermediate Western Boundary Current (IWBC). A time series analysis of 10-current-meter mooring data was used to describe a mean vertical profile for the BC-IWBC jet and a typical meander vertical structure. The latter was obtained by an empirical orthogonal function (EOF) analysis that showed a single mode explaining 82% of the total variance. This mode structure decayed sharply with depth, revealing that the meandering is much more vigorous within the BC domain than it is in the IWBC region. As the spectral analysis of the mode amplitude time series revealed no significant periods, we searched for dominant wavelengths. This search was done via a spatial EOF analysis on 51 thermal front patterns derived from digitized AVHRR images. Four modes were statistically significant at the 95% confidence level. Modes 3 and 4, which together explained 18% of the total variance, are associated with 266 and 338-km vorticity waves, respectively. With this new information derived from the data, the [Johns, W.E., 1988. One-dimensional baroclinically unstable waves on the Gulf Stream potential vorticity gradient near Cape Hatteras. Dyn. Atmos. Oceans 11, 323-350] one-dimensional quasi-geostrophic model was applied to the interpolated mean BC-IWBC jet. The results indicated that the BC system is indeed baroclinically unstable and that the wavelengths depicted in the thermal front analysis are associated with the most unstable waves produced by the model. Growth rates were about 0.06 (0.05) days(-1) for the 266-km (338-km) wave. Moreover, phase speeds for these waves were low compared to the surface BC velocity and may account for remarks in the literature about growing standing or stationary meanders off southeast Brazil. The theoretical vertical structure modes associated with these waves resembled very closely to the one obtained for the current-meter mooring EOF analysis. We interpret this agreement as a confirmation that baroclinic instability is an important mechanism in meander growth in the BC system. (C) 2008 Elsevier B.V. All rights reserved.