20 resultados para eccentric muscle contraction

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of N-Acetylcysteine (NAC), an unspecific antioxidant, on fatiguing contractile activity-induced injury were investigated. Twenty-four male Wistar rats were randomly assigned to two groups. The placebo group (N=12) received one injection of phosphate buffer (PBS) 1 h prior to contractile activity induced by electrical stimulation. The NAC group (NAC; N=12) received electrical stimulation for the same time period and NAC (500 mg/kg, i.p.) dissolved in PBS 1 h prior to electrical stimulation. The contralateral hindlimb was used as a control, except in the analysis of plasma enzyme activities, when a control group (rats placebo group not electrically stimulated and not treated) was included. The following parameters were measured: tetanic force, muscle fatigue, plasma activities of creatine kinase (CK) and lactate dehydrogenase (LDH), changes in muscle vascular permeability using Evans blue dye (EBD), muscle content of reactive oxygen species (ROS) and thiobarbituric acid-reactive substances (TBARS) and myeloperoxidase (MPO) activity. Muscle fatigue was delayed and tetanic force was preserved in NAC-treated rats. NAC treatment decreased plasma CK and LDH activities. The content of muscle-derived ROS, TBARS, EBD and MPO activity in both gastrocnemius and soleus muscles were also decreased by NAC pre-treatment. Thus, NAC has a protective effect against injury induced by fatiguing contractile activity in skeletal muscle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1?h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-?B activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthinexanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. J. Cell. Physiol. 227: 25112518, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ferreira, SLA, Panissa, VLG, Miarka, B, and Franchini, E. Postactivation potentiation: effect of various recovery intervals on bench press power performance. J Strength Cond Res 26(3): 739-744, 2012-Postactivation potentiation (PAP) is a strategy used to improve performance in power activities. The aim of this study was to determine if power during bench press exercise was increased when preceded by 1 repetition maximum (1RM) in the same exercise and to determine which time interval could optimize PAP response. For this, 11 healthy male subjects (age, 25 +/- 4 years; height, 178 +/- 6 cm; body mass, 74 +/- 8 kg; bench press 1RM, 76 +/- 19 kg) underwent 6 sessions. Two control sessions were conducted to determine both bench press 1RM and power (6 repetitions at 50% 1RM). The 4 experimental sessions were composed of a 1RM exercise followed by power sets with different recovery intervals (1, 3, 5, and 7 minutes), performed on different days, and determined randomly. Power values were measured via Peak Power equipment (Cefise, Nova Odessa, Sao Paulo, Brazil). The conditions were compared using an analysis of variance with repeated measures, followed by a Tukey test. The significance level was set at p < 0.05. There was a significant increase in PAP in concentric contractions after 7 minutes of recovery compared with the control and 1-minute recovery conditions (p < 0.05). Our results indicated that 7 minutes of recovery has generated an increase in PAP in bench press and that such a strategy could be applied as an interesting alternative to enhance the performance in tasks aimed at increasing upper-body power performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to develop an equipment and system of resistance exercise (RE), based on squat-type exercise for rodents, with control of training variables. We developed an operant conditioning system composed of sound, light and feeding devices that allowed optimized RE performance by the animal. With this system, it is not necessary to impose fasting or electric shock for the animal to perform the task proposed (muscle contraction). Furthermore, it is possible to perform muscle function tests in vivo within the context of the exercise proposed and control variables such as intensity, volume (sets and repetitions), and exercise session length, rest interval between sets and repetitions, and concentric strength. Based on the experiments conducted, we demonstrated that the model proposed is able to perform more specific control of other RE variables, especially rest interval between sets and repetitions, and encourages the animal to exercise through short-term energy restriction and "disturbing" stimulus that do not promote alterations in body weight. Therefore, despite experimental limitations, we believe that this RE apparatus is closer to the physiological context observed in humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. Further clarification is needed with regard to the degree of atrophy in individual muscle groups and its possible relationship to joint torque deficit poststroke. Objective. The purpose of this study was to investigate quadriceps and hamstring muscle volume and strength deficits of the knee extensors and flexors in people with chronic hemiparesis compared with a control group. Design. This was a cross-sectional study. Methods. Thirteen individuals with hemiparesis due to chronic stroke (hemiparetic group) and 13 individuals who were healthy (control group) participated in this study. Motor function, quadriceps and hamstring muscle volume, and maximal concentric and eccentric contractions of the knee extensors and flexors were assessed. Results. Only the quadriceps muscle of the paretic limb showed reduced muscle volume (24%) compared with the contralateral (nonparetic) limb. There were no differences in muscle volume between the hemiparetic and control groups. The peak torque of the paretic-limb knee extensors and flexors was reduced in both contraction modes and velocities compared with the nonparetic limb (36%-67%) and with the control group (49%-75%). The nonparetic limb also showed decreased extensor and flexor peak torque compared with the control group (17%-23%). Power showed similar deficits in strength (12%-78%). There were significant correlations between motor function and strength deficits (.54-.67). Limitations. Magnetic resonance imaging coil length did not allow measurement of the proximal region of the thigh. Conclusions. There were different responses between quadriceps and hamstring muscle volumes in the paretic limb that had quadriceps muscle atrophy only. However, both paretic and nonparetic limbs showed knee extensor and flexor torque and power reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present study was to verify whether a downhill running protocol was able to induce non-functional overreaching in > 75% of mice. Mice were divided into control (C), trained (TR) and overtrained (OTR) groups. Bodyweight and food intake were recorded weekly. The incremental load test (ILT) and the exhaustive test (ET) were used to measure performance before and after aerobic training and overtraining protocols. Although the bodyweight of the OTR group was lower than that of the C group at the end of Week 7, the food intake of the OTR group was higher than that of the C and TR groups at the end of Week 8. Evaluation of results from the ILT and ET revealed significant intra- and inter-group differences: whereas the parameters measured by both tests increased significantly in the TR group, they were significantly decreased in the OTR group. In conclusion, this new overtraining protocol based on downhill running sessions induced non-functional overreaching in 100% of mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Evidence of self-sustained muscle activation following a brief electrical stimulation has been reported in the literature for certain muscles. Objectives: This report shows that the foot muscle (Flexor Digitorum Brevis - FDB) shows a self-sustained increase in muscle activity during upright stance in some subjects following a train of stimuli to the tibial nerve. Methods: Healthy subjects were requested to stand upright and surface EMG electrodes were placed on the FDB, Soleus and Tibialis Anterior muscles. After background muscle activity (BGA) acquisition, a 50 Hz train of stimuli was applied to the tibial nerve at the popliteal fossa. The root mean square values (RMS) of the BGA and the post-stimulus muscle activation were computed. Results: There was a 13.8% average increase in the FDB muscle EMG amplitude with respect to BGA after the stimulation was turned off. The corresponding post-stimulus Soleus EMG activity decreased by an average of 9.2%. We hypothesize that the sustained contraction observed in the FDB following stimulus may be evidence of persistent inward currents (PIC) generated in FDB spinal motoneurons. The post-stimulus decrease in soleus activity may have occurred due to the action of inhibitory interneurons caused by the PICs, which were triggered by the stimulus train. Conclusions: These sustained post-stimulation changes in postural muscle activity, found in different levels in different subjects, may be part of a set of possible responses that contribute to overall postural control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study compared the changes in markers of muscle damage after bouts of resistance exercise employing the Multiple-sets (MS) and Half-pyramid (HP) training systems. Ten healthy men (26.1 +/- 6.3 years), who had been involved in regular resistance training, performed MS and HP bouts, 14 days apart, in a randomised, counter-balanced manner. For the MS bout, participants performed three sets of maximum repetitions at 75%-1RM (i.e. 75% of a One Repetition Maximum) for the three exercises, starting with the bench press, followed by pec deck and decline bench press. For the HP bout, the participants performed three sets of maximum repetitions with 67%-1RM, 74%-1RM and 80%-1RM for the first, second and third sets, respectively, for the same three exercise sequences as the MS bout. The total volume of load lifted was equated between both bouts. Muscle soreness, plasma creatine kinase (CK) activity, myoglobin (Mb) and C-reactive protein (CRP) concentrations were assessed before and for three days after each exercise bout, and the changes over time were compared between MS and HP using two-way repeated measures ANOVA. Muscle soreness developed significantly (P<0.01) after both bouts, but no significant difference was observed between MS and HP. Plasma CK activity and Mb concentration increased significantly (P<0.01) without significant differences between bouts, and CRP concentration did not change significantly after either bout. These results suggest that the muscle damage profile is similar for MS and HP, probably due to the similar total volume of load lifted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of TLRs (Toll-like receptors) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of CVDs (cardiovascular diseases). Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study, we hypothesize that inhibition of TLR4 decreases BP (blood pressure) and improves vascular contractility in resistance arteries from SHR (spontaneously hypertensive rats). TLR4 protein expression in mesenteric resistance arteries was higher in 15-week-old SHR than in age-matched Wistar controls or in 5-week-old SHR. To decrease the activation of TLR4, 15-week-old SHR and Wistar rats were treated with anti-TLR4 (anti-TLR4 antibody) or non-specific IgG control antibody for 15 days (1 mu g per day, intraperitoneal). Treatment with anti-TLR4 decreased MAP (mean arterial pressure) as well as TLR4 protein expression in mesenteric resistance arteries and IL-6 (interleukin 6) serum levels from SHR when compared with SHR treated with IgG. No changes in these parameters were found in treated Wistar control rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to NA (noradrenaline) compared with IgG-treated SHR. Inhibition of COX (cyclo-oxygenase)-1 and COX-2, enzymes related to inflammatory pathways, decreased NA responses only in mesenteric resistance arteries of SHR treated with IgG. COX-2 expression and TXA(2) (thromboxane A(2)) release were decreased in SHR treated with anti-TLR4 compared with IgG-treated SHR. Our results suggest that TLR4 activation contributes to increased BP, low-grade inflammation and plays a role in the augmented vascular contractility displayed by SHR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the detection of CoRoT-23b, a hot Jupiter transiting in front of its host star with a period of 3.6314 +/- 0.0001 days. This planet was discovered thanks to photometric data secured with the CoRoT satellite, combined with spectroscopic radial velocity (RV) measurements. A photometric search for possible background eclipsing binaries conducted at CFHT and OGS concluded with a very low risk of false positives. The usual techniques of combining RV and transit data simultaneously were used to derive stellar and planetary parameters. The planet has a mass of M-p = 2.8 +/- 0.3 M-Jup, a radius of R-pl = 1.05 +/- 0.13 R-Jup, a density of approximate to 3 gcm(-3). RV data also clearly reveal a nonzero eccentricity of e = 0.16 +/- 0.02. The planet orbits a mature G0 main sequence star of V = 15.5 mag, with a mass M-star = 1.14 +/- 0.08 M-circle dot, a radius R-star = 1. 61 +/- 0.18 R-circle dot and quasi-solar abundances. The age of the system is evaluated to be 7 Gyr, not far from the transition to subgiant, in agreement with the rather large stellar radius. The two features of a significant eccentricity of the orbit and of a fairly high density are fairly uncommon for a hot Jupiter. The high density is, however, consistent with a model of contraction of a planet at this mass, given the age of the system. On the other hand, at such an age, circularization is expected to be completed. In fact, we show that for this planetary mass and orbital distance, any initial eccentricity should not totally vanish after 7 Gyr, as long as the tidal quality factor Q(p) is more than a few 10(5), a value that is the lower bound of the usually expected range. Even if CoRoT-23b features a density and an eccentricity that are atypical of a hot Jupiter, it is thus not an enigmatic object.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

STUDY DESIGN: Controlled laboratory study using a cross-sectional design. OBJECTIVES: To determine whether there are any differences between the sexes in trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during the performance of a single-leg squat in individuals with patellofemoral pain syndrome (PFPS) and control participants. BACKGROUND: Though there is a greater incidence of PFPS in females, PFPS is also quite common in males. Trunk kinematics may affect hip and knee function; however, there is a lack of studies of the influence of the trunk in individuals with PFPS. METHODS: Eighty subjects were distributed into 4 groups: females with PFPS, female controls, males with PFPS, and male controls. Trunk, pelvis, hip, and knee kinematics and gluteal muscle activation were evaluated during a single-leg squat. Hip abduction and external rotation eccentric strength was measured on an isokinetic dynamometer. Group differences were assessed using a 2-way multivariate analysis of variance (sex by PFPS status). RESULTS: Compared to controls, subjects with PFPS had greater ipsilateral trunk lean (mean +/- SD, 9.3 degrees +/- 5.30 degrees versus 6.7 degrees +/- 3.0 degrees; P = .012), contralateral pelvic drop (10.3 degrees +/- 4.7 degrees versus 7.4 degrees 3.8 degrees; P = .003), hip adduction (14.8 degrees +/- 7.8 degrees versus 10.8 degrees +/- 5.6 degrees; P<.0001), and knee abduction (9.2 degrees +/- 5.0 degrees versus 5.8 degrees +/- 3.4 degrees; P<.0001) when performing a single-leg squat. Subjects with PFPS also had 18% less hip abduction and 17% less hip external rotation strength. Compared to female controls, females with PFPS had more hip internal rotation (P<.05) and less muscle activation of the gluteus medius (P = .017) during the single-leg squat. CONCLUSION: Despite many similarities in findings for males and females with PFPS, there may be specific sex differences that warrant consideration in future studies and when clinically evaluating and treating females with PFPS. J Orthop Sports Phys Ther 2012;42(6):491-501, Epub 8 March 2012. doi:10.2519/jospt.2012.3987

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motoneuron (MN) dendrites may be changed from a passive to an active state by increasing the levels of spinal cord neuromodulators, which activate persistent inward currents (PICs). These exert a powerful influence on MN behavior and modify the motor control both in normal and pathological conditions. Motoneuronal PICs are believed to induce nonlinear phenomena such as the genesis of extra torque and torque hysteresis in response to percutaneous electrical stimulation or tendon vibration in humans. An existing large-scale neuromuscular simulator was expanded to include MN models that have a capability to change their dynamic behaviors depending on the neuromodulation level. The simulation results indicated that the variability (standard deviation) of a maintained force depended on the level of neuromodulatory activity. A force with lower variability was obtained when the motoneuronal network was under a strong influence of PICs, suggesting a functional role in postural and precision tasks. In an additional set of simulations when PICs were active in the dendrites of the MN models, the results successfully reproduced experimental results reported from humans. Extra torque was evoked by the self-sustained discharge of spinal MNs, whereas differences in recruitment and de-recruitment levels of the MNs were the main reason behind torque and electromyogram (EMG) hysteresis. Finally, simulations were also used to study the influence of inhibitory inputs on a MN pool that was under the effect of PICs. The results showed that inhibition was of great importance in the production of a phasic force, requiring a reduced co-contraction of agonist and antagonist muscles. These results show the richness of functionally relevant behaviors that can arise from a MN pool under the action of PICs.