3 resultados para earliest Triassic
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We describe an additional saurischian specimen from the Caturrita Formation (Norian) of the Parana Basin, southern Brazil. This material was collected in the 1950s and remained unstudied due to its fragmentary condition. Detailed comparisons with other saurischians worldwide reveal that some characters of the ilium, including the low ventral projection of the medial wall of the acetabulum and its concave ventral margin, together with the short triangular shape of the pre-acetabular process and its mound-like dorsocaudal edge, resemble those of sauropodomorphs such as Plateosaurus and Riojasaurus. This set of traits suggests that MN 1326-V has affinities with basal Sauropodomorpha, probably closer to plateosaurians than to Saturnalia-like taxa. Previous records of this clade in the Caturrita Formation include Unaysaurus, which has been related to Plateosaurus within Plateosauridae. Alternative schemes suggest that plateosaurids include Plateosaurus plus the Argentinean 'prosauropods' Coloradisaurus and Riojasaurus. Both hypotheses raise biogeographic questions, as a close relationship between faunas from South America and Europe excluding Africa and North America is not supported by geological and biostratigraphical evidence. Additionally, the absence of plateosaurids in other continents suggests that the geographical distribution of this taxon is inconsistent with the geological history of western Pangaea, and this demands further investigations of the phylogeny of sauropodomorphs or improved sampling.
Resumo:
Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate and precise radiogenic isotope age determination, hampering the assessment of the effects of an individual event in the geological record. We demonstrate the utility of a multi-chronometer approach in our study of samples from the 40 km diameter Araguainha impact structure of central Brazil. Samples of uplifted basement granite display abundant evidence of shock deformation, but U/Pb ages of shocked zircons and the Ar-40/Ar-39 ages of feldspar from the granite largely preserve the igneous crystallization and cooling history. Mixed results are obtained from in situ Ar-40/Ar-39 spot analyses of shocked igneous biotites in the granite, with deformation along kink-bands resulting in highly localized, partial resetting in these grains. Likewise, spot analyses of perlitic glass from pseudotachylitic breccia samples reflect a combination of argon inheritance from wall rock material, the age of the glass itself, and post-impact devitrification. The timing of crater formation is better assessed using samples of impact-generated melt rock where isotopic resetting is associated with textural evidence of melting and in situ crystallization. Granular aggregates of neocrystallized zircon form a cluster of ten U-Pb ages that yield a "Concordia" age of 247.8 +/- 3.8 Ma. The possibility of Pb loss from this population suggests that this is a minimum age for the impact event. The best evidence for the age of the impact comes from the U-Th-Pb dating of neocrystallized monazite and Ar-40/Ar-39 step heating of three separate populations of post-impact, inclusion-rich quartz grains that are derived from the infill of miarolitic cavities. The Pb-206/U-238 age of 254.5 +/- 3.2 Ma (2 sigma error) and Pb-208/Th-232 age of 255.2 +/- 4.8 Ma (2 sigma error) of monazite, together with the inverse, 18 point isochron age of 254 +/- 10 Ma (MSWD = 0.52) for the inclusion-rich quartz grains yield a weighted mean age of 254.7 +/- 2.5 Ma (0.99%, 2 sigma error) for the impact event. The age of the Araguainha crater overlaps with the timing of the Permo-Triassic boundary, within error, but the calculated energy released by the Araguainha impact is insufficient to be a direct cause of the global mass extinction. However, the regional effects of the Araguainha impact event in the Parana-Karoo Basin may have been substantial. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Triassic dinosaurs of Brazil are found in Santa Maria and Caturrita formations, Rio Grande do Sul state, Brazil. There are three species known from the Santa Maria Formation (Staurikosaurus pricei, Saturnalia tupiniquim and Pampadromaeus barberenai), and two from Caturrita Formation (Guaibasaurus candelariensis and Unaysaurus tolentinoi). These dinosaur materials are, for the most part, well preserved and allow for descriptions of musculature and biomechanical studies. The lateral rotation of the Saturnalia femur is corroborated through calculations of muscle moment arms. The enhanced supracetabular crest of Saturnalia, Guaibasaurus, Staurikosaurus, Herrerasaurus ischigualastensis, Efraasia minor and Chormogisaurus novasi suggests that basal dinosaurs may have maintained an inclination of the trunk at least 20º on the horizontal axis. The pectoral girdle articulation of basal sauropodomorphs (Saturnalia and Unaysaurus) was established using a new method, the Clavicular Ring, and the scapular blade remains near 60º on the horizontal axis. This is a plesiomorphic condition among sauropodomorphs and is also seen in the articulated plateosauridae Seitaad ruessi. The Brazilian basal dinosaurs were lightweight with a body mass estimated around 18.5 kg for Staurikosaurus, 6.5 kg for Saturnalia, and 17 kg for Guaibasaurus. Pampadromaeus probably weighed 2.5 kg, but measures of its femur are necessary to confirm this hypothesis. The Triassic dinosaurs from Brazil were diversified but shared some functional aspects that were important in an evolutionary context.