14 resultados para dual pathway model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
As in the case of most small organic molecules, the electro-oxidation of methanol to CO2 is believed to proceed through a so-called dual pathway mechanism. The direct pathway proceeds via reactive intermediates such as formaldehyde or formic acid, whereas the indirect pathway occurs in parallel, and proceeds via the formation of adsorbed carbon monoxide (COad). Despite the extensive literature on the electro-oxidation of methanol, no study to date distinguished the production of CO2 from direct and indirect pathways. Working under, far-from-equilibrium, oscillatory conditions, we were able to decouple, for the first time, the direct and indirect pathways that lead to CO2 during the oscillatory electro-oxidation of methanol on platinum. The CO2 production was followed by differential electrochemical mass spectrometry and the individual contributions of parallel pathways were identified by a combination of experiments and numerical simulations. We believe that our report opens some perspectives, particularly as a methodology to be used to identify the role played by surface modifiers in the relative weight of both pathways-a key issue to the effective development of catalysts for low temperature fuel cells.
Resumo:
In this paper we present results on the electro-oxidation of ethanol on unsupported (carbon free) platinum nanoparticles, considering the effects of the alcohol concentration. The case of the so-called dual pathway mechanism during the electro-oxidation of ethanol showed to be influenced by the surface coverage of adsorbed carbon monoxide (COad) at unsupported platinum. The influences of adsorbed intermediates were followed by in situ infrared spectroscopy (FTIR) and by electrochemical experiments. Unsupported platinum showed that the reaction leads to the formation of CO2 and acetic acid as main products at low concentrations of ethanol (0.01 to 0.1 mol L-1). At least in this case of 0.01 mol L-1 ethanol, most formation of CO2 occurred via COad (indirect pathway). At higher concentration of ethanol, however, most CO2 was formed via a reactive intermediate such as acetaldehyde (direct pathway). In addition, in this higher concentration of ethanol, the acetic acid was produced via formation of adsorbed acetaldehyde (via acetate) at higher overpotentials. In case of the acetic acid formation, a dual pathway was identified during the electro-oxidation of ethanol at low alcohol concentrations, whereas a parallel pathway occurred without the formation of adsorbed acetate intermediates at low overpotentials. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.101203jes] All rights reserved.
Resumo:
Crown ethers have the ability of solubilizing inorganic salts in apolar solvents and to promote chemical reactions by phase-transfer catalysis. However, details on how crown ethers catalyze ionic S(N)2 reactions and control selectivity are not well understood. In this work, we have used high level theoretical calculations to shed light on the details of phase-transfer catalysis mechanism of KF reaction with alkyl halides promoted by 18-crown-6. A complete analysis of the of the model reaction between KF(18-crown-6) and ethyl bromide reveals that the calculations can accurately predict the product ratio and the overall kinetics. Our results point out the importance of the K* ion and of the crown ether ring in determining product selectivity. While the K* ion favors the S(N)2 over the E2 anti pathway, the crown ether ring favors the S(N)2 over E2 syn route. The combination effects lead to a predicted 94% for the S(N)2 pathway in excellent agreement with the experimental value of 92%. A detailed analysis of the overall mechanism of the reaction under phase-transfer conditions also reveals that the KBr product generated in the nucleophilic fluorination acts as an inhibitor of the 18-crown-6 catalyst and it is responsible for the observed slow reaction rate. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Increased fibrinolysis is an important component of acute promyelocytic leukemia (APL) bleeding diathesis. APL blasts overexpress annexin II (ANXII), a receptor for tissue plasminogen activator (tPA), and plasminogen, thereby increasing plasmin generation. Previous studies suggested that ANXII plays a pivotal role in APL coagulopathy. ANXII binding to tPA can be inhibited by homocysteine and hyperhomocysteinemia can be induced by L-methionine supplementation. In the present study, we used an APL mouse model to study ANXII function and the effects of hyperhomocysteinemia in vivo. Leukemic cells expressed higher ANXII and tPA plasma levels (11.95 ng/mL in leukemic vs 10.74 ng/mL in wild-type; P = .004). In leukemic mice, administration of L-methionine significantly increased homocysteine levels (49.0 mu mol/mL and < 6.0 mu mol/mL in the treated and nontreated groups, respectively) and reduced tPA levels to baseline concentrations. The latter were also decreased after infusion of the LCKLSL peptide, a competitor for the ANXII tPA-binding site (11.07 ng/mL; P = .001). We also expressed and purified the p36 component of ANXII in Pichia methanolica. The infusion of p36 in wild-type mice increased tPA and thrombin-antithrombin levels, and the latter was reversed by L-methionine administration. The results of the present study demonstrate the relevance of ANXII in vivo and suggest that methionine-induced hyperhomocysteinemia may reverse hyperfibrinolysis in APL. (Blood. 2012;120(1):207-213)
Resumo:
Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 mu M 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 mu M ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five mu M ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5X), perifosine (3X), and arsenic trioxide (8.5X). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy. Molecular & Cellular Proteomics 11: 10.1074/mcp.M112.019661, 1898-1912, 2012.
Resumo:
Dietary nitrite and nitrate have been reported as alternative sources of nitric oxide (NO). In this regard, we reported previously that sodium nitrite added to drinking water was able to exert antihypertensive effects in an experimental model of hypertension in a dose-dependent manner. Taking into consideration that nitrite is continuously converted to nitrate in the bloodstream, here we expanded our previous report and evaluate whether a single daily dose of sodium nitrite could exert antihypertensive effects in 2 kidney-1 clip (2K1C) hypertensive rats. Sham-operated and 2K1C rats were treated with vehicle or sodium nitrite (15 mg/kg/day) for 4 weeks. We evaluated the effects induced by sodium nitrite treatment on systolic blood pressure (SBP) and NO markers such as plasma nitrite, nitrite + nitrate (NOx), cGMP, and blood levels of nitrosyl-hemoglobin. In addition, we also evaluated effects of nitrite on oxidative stress and antioxidant enzymes. Dihydroethidium (DHE) was used to evaluate aortic reactive oxygen species (ROS) production by fluorescence microscopy, and plasma levels of thiobarbituric acid-reactive species (TBARS) were measured in plasma samples from all experimental groups. Red blood cell superoxide dismutase (SOD) and catalase activity were evaluated with commercial kits. Sodium nitrite treatment reduced SBP in 2K1C rats (P < 0.05). We found lower plasma nitrite and NOx levels in 2K1C rats compared with normotensive controls (both P < 0.05). Nitrite treatment restored the lower levels of nitrite and NOx. While no change was found in the blood levels of nitrosyl-hemoglobin (P > 0.05), nitrite treatment increased the plasma levels of cGMP in 2K1C rats (P < 0.05). Higher plasma TBARS levels and aortic ROS levels were found in hypertensive rats compared with controls (P < 0.05), and nitrite blunted these alterations. Lower SOD and catalase activities were found in 2K1C hypertensive rats compared with controls (both P < 0.05). Nitrite treatment restored SOD activity (P < 0.05), whereas catalase was not affected. These data suggest that even a single daily oral dose of sodium nitrite is able to lower SBP and exert antioxidant effects in renovascular hypertension.
Resumo:
Crotalphine, a 14 amino acid peptide first isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, induces a peripheral long-lasting and opioid receptor-mediated antinociceptive effect in a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. In the present study, we further characterized the molecular mechanisms involved in this effect, determining the type of opioid receptor responsible for this effect and the involvement of the nitric oxide-cyclic GMP pathway and of K+ channels. Crotalphine (0.2 or 5 mu g/kg, orally; 0.0006 mu g/paw), administered on day 14 after nerve constriction, inhibited mechanical hyperalgesia and low-threshold mechanical allodynia. The effect of the peptide was antagonized by intraplantar administration of naltrindole, an antagonist of delta-opioid receptors, and partially reversed by norbinaltorphimine, an antagonist of kappa-opioid receptors. The effect of crotalphine was also blocked by 7-nitroindazole, an inhibitor of the neuronal nitric oxide synthase; by 1H-(1,2,4) oxadiazolo[4,3-a]quinoxaline-1-one, an inhibitor of guanylate cyclase activation; and by glibenclamide, an ATP-sensitive K+ channel blocker. The results suggest that peripheral delta-opioid and kappa-opioid receptors, the nitric oxide-cyclic GMP pathway, and ATP-sensitive K+ channels are involved in the antinociceptive effect of crotalphine. The present data point to the therapeutic potential of this peptide for the treatment of chronic neuropathic pain. Behavioural Pharmacology 23:14-24 (C) 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Our goal was to demonstrate the in vivo tumor specific accumulation of crotamine, a natural peptide from the venom of the South American rattlesnake Crotalus durissus terrificus, which has been characterized by our group as a cell penetrating peptide with a high specificity for actively proliferating cells and with a concentration-dependent cytotoxic effect. Crotamine cytotoxicity has been shown to be dependent on the disruption of lysosomes and subsequent activation of intracellular proteases. In this work, we show that the cytotoxic effect of crotamine also involves rapid intracellular calcium release and loss of mitochondrial membrane potential as observed in real time by confocal microscopy. The intracellular calcium overload induced by crotamine was almost completely blocked by thapsigargin. Microfluorimetry assays confirmed the importance of internal organelles, such as lysosomes and the endoplasmic reticulum, as contributors for the intracellular calcium increase, as well as the extracellular medium. Finally, we demonstrate here that crotamine injected intraperitoneally can efficiently target remote subcutaneous tumors engrafted in nude mice, as demonstrated by a noninvasive optical imaging procedure that permits in vivo real-time monitoring of crotamine uptake into tumor tissue. Taken together, our data indicate that the cytotoxic peptide crotamine can be used potentially for a dual purpose: to target and detect growing tumor tissues and to selectively trigger tumor cell death.
Resumo:
This paper addresses the numerical solution of random crack propagation problems using the coupling boundary element method (BEM) and reliability algorithms. Crack propagation phenomenon is efficiently modelled using BEM, due to its mesh reduction features. The BEM model is based on the dual BEM formulation, in which singular and hyper-singular integral equations are adopted to construct the system of algebraic equations. Two reliability algorithms are coupled with BEM model. The first is the well known response surface method, in which local, adaptive polynomial approximations of the mechanical response are constructed in search of the design point. Different experiment designs and adaptive schemes are considered. The alternative approach direct coupling, in which the limit state function remains implicit and its gradients are calculated directly from the numerical mechanical response, is also considered. The performance of both coupling methods is compared in application to some crack propagation problems. The investigation shows that direct coupling scheme converged for all problems studied, irrespective of the problem nonlinearity. The computational cost of direct coupling has shown to be a fraction of the cost of response surface solutions, regardless of experiment design or adaptive scheme considered. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background Previous studies have established that mycobacterial infections ameliorate allergic inflammation. However, a non-infectious approach that controls allergic responses might represent a safer and more promising strategy. The 60-65 kDa heat shock protein (Hsp) family is endowed with anti-inflammatory properties, but it is still unclear whether and how single mycobacterial Hsp control allergic disorders. Objective Therefore, in this study we determined whether the administration of Mycobacterial leprae Hsp65 expressed by recombinant a DNA plasmid could attenuate a previously established allergic response. Methods We used an experimental model of airway allergic inflammation to test the effects of immunotherapy with DNA encoding Hsp65. Allergic mice, previously sensitized and challenged with ovalbumin, were treated with tree intramuscular doses of recombinant DNA encoding Hsp65. After treatment, mice received a second allergen challenge and the allergic response was measured. Results We found that immunotherapy attenuated eosinophilia, pulmonary inflammation, Th2 cytokine and mucus production. Moreover, we showed that the inhibition of allergic response is dependent on IL-10 production. Both Hsp65 and allergen-specific IL-10-producing cells contributed to this effect. Cells transferred from DNA-immunized mice to allergic mice migrated to allergic sites and down-modulated the Th2 response. Conclusions and Clinical Relevance Our findings clearly show that immunotherapy with DNA encoding Hsp65 can attenuate an established Th2 allergic inflammation through an IL-10-dependent mechanism; moreover, the migration of allergen-and Hsp65-specific cells to the allergic sites exerts a fundamental role. This work represents a novel contribution to the understanding of immune regulation by Hsp65 in allergic diseases.
Resumo:
Many bird species take recesses during incubation, and while the nests are unattended, the eggs may both be vulnerable to predation and reach suboptimal temperatures for embryo development. Perhaps to avoid these negative possibilities, some birds cover their eggs with materials when they depart from nests. We examined experimentally, using the ground-nesting Kentish plover as model species, whether egg-covering allows egg temperatures to remain within optimal limits for embryogenesis in unattended nests, thus reducing the requirements of contact incubation, and simultaneously maintain the eggs' camouflage. There was a negative relationship between nest attendance and ambient temperature, but only during mid-morning, the period of the day when egg-covering was most frequent. Indeed, during mid-morning egg-covering not only served to better camouflage the eggs, but also to maintain egg temperatures within optimal thermal thresholds for embryogenesis while the nests remained unattended. During other periods of the day, covered eggs in unattended nests overheated (e.g., afternoon) or did not reach the optimal temperature for embryogenesis (e.g., early morning). During periods in which eggs may be uncovered to alleviate overheating, unattended nests may be easier to locate by predators, because the eggs are less well camouflaged. Therefore, camouflage and appropriate thermal environment are inseparable functions of egg-covering in the ground-nesting Kentish plover.
Resumo:
Abstract Background The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. Methods Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. Results Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). Conclusions In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due to a high expression of 8-isoprostane, which had a procontractile effect. The mechanism involved in this response is likely related to the modulation of NF-kB expression, which contributed to the activation of the arginase and iNOS pathways. The association of both inhibitors potentiated the reduction of 8-isoprostane expression in this animal model.
Resumo:
Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation.
Resumo:
Temperature dependent transient curves of excited levels of a model Eu3+ complex have been measured for the first time. A coincidence between the temperature dependent rise time of the 5D0 emitting level and decay time of the 5D1 excited level in the [Eu(tta)3(H2O)2] complex has been found, which unambiguously proves the T1→5D1→5D0 sensitization pathway. A theoretical approach for the temperature dependent energy transfer rates has been successfully applied to the rationalization of the experimental data.