13 resultados para drug interactions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Purpose. The primary objective of this study was to investigate the prevalence of clinically important potential drug-drug interactions (DDIs) in elderly patients attending the public primary health care system in Brazil. The secondary objective was to investigate possible predictors of potential DDIs. Methods. A cross-sectional study was carried out in 5 Brazilian cities located in the Ourinhos Micro-region, Sao Paulo State, between November 2010 and April 2011. The selected sample was divided according to the presence (exposed) or absence (unexposed) of one or more potential DDIs (defined as the presence of a minimum 5-day overlap in supply of an interacting drug pair). Data were collected from medical prescriptions and patients' medical records. Potential DDIs (rated major or moderate) were identified using 4 DDI-checker programs. Logistic regression analysis was used to study potential DDI predictors. Results. The prevalence of clinically important potential DDIs found during the study period was 47.4%. Female sex (OR = 2.49 [95% CI 2.29-2.75]), diagnosis of = 3 diseases (OR = 6.43 [95% CI 3.25-12.44]), and diagnosis of hypertension (OR = 1.68 [95% CI 1.23-2.41]) were associated with potential DDIs. The adjusted OR increased from 0.90 [95% CI 0.82-1.03] in patients aged 60 - 64 years to 4.03 [95% CI 3.79 - 4.28] in those aged 75 years or older. Drug therapy regimens involving = 2 prescribers (OR = 1.39 [95% CI 1.17-1.67]), = 3 drugs (OR = 3.21 [95% CI 2.78-3.59]), = 2 ATC codes (OR = 1.19 [95% CI 1.12-1.29]), = 2 drugs acting on cytochrome P450 (OR = 2.24 [95% CI 2.07-2.46]), and ATC codes B (OR = 1.89 [95% CI 1.05-2.08]) and C (OR = 4.01 [95% CI 3.55-4.57]) were associated with potential DDIs. Conclusion. Special care should be taken with the prescription and therapeutic follow-up of patients who present characteristics identified as predictors. Knowledge of potential DDI predictors could aid in developing preventive practices and policies that allow public health services to better manage this situation.
Resumo:
Purpose. The primary objective of this study was to investigate the incidence of drug-drug interactions (DDIs) related to adverse drug reactions (ADRs) in elderly outpatients who attended public primary healthcare units in a southeastern region of Brazil. The secondary objective was to investigate the possible predictors of DDI-related ADRs. Methods. A prospective cohort study was conducted between November 1, 2010, and November 31, 2011, in the primary public healthcare system in the Ourinhos micro-region in Brazil. Patients who were at least 60 years old, with at least one potential DDI, were eligible for inclusion in the study. Eligible patients were assessed by clinical pharmacists for DDI-related ADRs for 4 months. The causality of DDI-related ADRs was assessed independently by four clinicians using three decisional algorithms. The incidence of DDI-related ADRs during the study period was calculated. Logistic regression analysis was used to study DDI-related ADR predictors. Results. A total of 433 patients completed the study. The incidence of DDI-related ADRs was 6.5%. A multivariate analysis indicated that the adjusted odds ratios (ORs) rose from 0.91 (95% confidence interval [CI] = 0.75-1.12, p = 0.06) in patients aged 65-69 years to 4.40 (95% CI = 3.00-6.12, p < 0.01) in patients aged 80 years or older. Patients who presented two to three diagnosed diseases presented lower adjusted ORs (OR = 0.93 [95% CI = 0.68-1.18, p = 0.08]) than patients who presented six or more diseases (OR = 1.12 [95% CI = 1.02-2.01, p < 0.01]). Elderly patients who took five or more drugs had a significantly higher risk of DDI-related ADRs (OR = 2.72 [95% CI = 1.92-3.12, p < 0.01]) than patients who took three to four drugs (OR = 0.93 [95% CI = 0.74-1.11, p = 0.06]). No significant difference was found with regard to sex (OR = 1.08 [95% CI 0.48-2.02, p = 0.44]). Conclusion. The incidence of DDI-related ADRs in elderly outpatients was significant, and most of the events presented important clinical consequences. Because clinicians still have difficulty managing this problem, highlighting the factors that increase the risk of DDI-related ADRs is essential. Polypharmacy was found to be a significant predictor of DDI-related ADRs in our sample.
Resumo:
Background: Few cross-sectional studies involving adults and elderly patients with major DDIs have been conducted in the primary care setting. The study aimed to investigate the prevalence of potential drug-drug interactions (DDIs) in patients treated in primary care. Methodology/Principal Findings: A cross-sectional study involving patients aged 45 years or older was conducted at 25 Basic Health Units in the city of Maringa (southern Brazil) from May to December 2010. The data were collected from prescriptions at the pharmacy of the health unit at the time of the delivery of medication to the patient. After delivery, the researcher checked the electronic medical records of the patient. A total of 827 patients were investigated (mean age: 64.1; mean number of medications: 4.4). DDIs were identified in the Micromedex (R) database. The prevalence of potential DDIs and major DDIs was 63.0% and 12.1%, respectively. In both the univariate and multivariate analyses, the number of drugs prescribed was significantly associated with potential DDIs, with an increasing risk from three to five drugs (OR = 4.74; 95% CI: 2.90-7.73) to six or more drugs (OR = 23.03; 95% CI: 10.42-50.91). Forty drugs accounted for 122 pairs of major DDIs, the most frequent of which involved simvastatin (23.8%), captopril/enalapril (16.4%) and fluoxetine (16.4%). Conclusions/Significance: This is the first large-scale study on primary care carried out in Latin America. Based on the findings, the estimated prevalence of potential DDIs was high, whereas clinically significant DDIs occurred in a smaller proportion. Exposing patients to a greater number of prescription drugs, especially three or more, proved to be a significant predictor of DDIs. Prescribers should be more aware of potential DDIs. Future studies should assess potential DDIs in primary care over a longer period of time.
Resumo:
Although the prevalence of drug-drug interactions (DDIs) in elderly outpatients is high, many potential DDIs do not have any actual clinical effect, and data on the occurrence of DDI-related adverse drug reactions (ADRs) in elderly outpatients are scarce. This study aimed to determine the incidence and characteristics of DDI-related ADRs among elderly outpatients as well as the factors associated with these reactions. A prospective cohort study was conducted between 1 November 2010 and 31 November 2011 in the primary public health system of the Ourinhos micro-region, Brazil. Patients aged a parts per thousand yen60 years with at least one potential DDI were eligible for inclusion. Causality, severity, and preventability of the DDI-related ADRs were assessed independently by four clinicians using validated methods; data were analysed using descriptive analysis and multiple logistic regression. A total of 433 patients completed the study. The incidence of DDI-related ADRs was 6 % (n = 30). Warfarin was the most commonly involved drug (37 % cases), followed by acetylsalicylic acid (17 %), digoxin (17 %), and spironolactone (17 %). Gastrointestinal bleeding occurred in 37 % of the DDI-related ADR cases, followed by hyperkalemia (17 %) and myopathy (13 %). The multiple logistic regression showed that age a parts per thousand yen80 years [odds ratio (OR) 4.4; 95 % confidence interval (CI) 3.0-6.1, p < 0.01], a Charlson comorbidity index a parts per thousand yen4 (OR 1.3; 95 % CI 1.1-1.8, p < 0.01), consumption of five or more drugs (OR 2.7; 95 % CI 1.9-3.1, p < 0.01), and the use of warfarin (OR 1.7; 95 % CI1.1-1.9, p < 0.01) were associated with the occurrence of DDI-related ADRs. With regard to severity, approximately 37 % of the DDI-related ADRs detected in our cohort necessitated hospital admission. All DDI-related ADRs could have been avoided (87 % were ameliorable and 13 % were preventable). The incidence of ADRs not related to DDIs was 10 % (n = 44). The incidence of DDI-related ADRs in elderly outpatients is high; most events presented important clinical consequences and were preventable or ameliorable.
Resumo:
The aim of the present study was to obtain microparticles of hydrochlorothiazide, a diuretic drug that practically insoluble in water, by spray drying and to investigate the influence of process parameters using a three-level, three-factor Box-Behnken design. Process yields, moisture content, particle size, flowability, and solubility were used to evaluate the spray-dried microparticles. The data were analyzed by response surface methodology using analysis of variance. The independent variables studied were outlet temperature, atomization pressure, and drug content. The formulations were prepared using polyvinylpyrrolidone and colloidal silicon dioxide as the hydrophilic carrier and drying aid, respectively. The microparticle yield ranged from 18.15 to 59.02% and resulted in adequate flow (17 to 32 degrees), moisture content between 2.52 to 6.18%, and mean particle size from 45 to 59 mu m. The analysis of variance showed that the factors studied influenced the yields, moisture content, angle of repose, and solubility. Thermal analysis and X-ray diffractometry evidenced no drug interactions or chemical modifications. Photomicrographs obtained by scanning electron microscopy showed spherical particles. The solubility and dissolution rates of hydrochlorothiazide were remarkably improved when compared with pure drug. Therefore, the results confirmed the high potential of the spray-drying technique to obtain microparticulate hydrochlorothiazide with enhanced pharmaceutical and dissolution properties.
Resumo:
Ceftazidime is a broad spectrum antibiotic administered mainly by the parenteral route, and it is especially effective against Pseudomonas aeruginosa. The period of time in which serum levels exceed the Minimum Inhibitory Concentration (MIC) is an important pharmacodynamic parameter for its efficacy. One of the forms to extend this period is to administer the antibiotic by continuous infusion, after prior dilution in a Parenteral Solution (PS). The present work assessed the stability of ceftazidime in 5% glucose PS for 24 hours, combined or not with aminophylline, through High Performance Liquid Chromatography (HPLC). The physicochemical evaluation was accompanied by in vitro antimicrobial activity compared MIC test in the 24-hour period. Escherichia coli and Pseudomonas aeruginosa were the microorganisms chosen for the MIC comparison. The HPLC analysis confirmed ceftazidime and aminophylline individual stability on PS, while the MIC values were slightly higher than the mean described in the literature. When both drugs were associated in the same PS, the ceftazidime concentration by HPLC decreased 25% after 24 hours. Not only did the MIC values show high loss of antibiotic activity within the same period, but also altered MIC values immediately after the preparation, which was not detected by HPLC. Our results indicate that this drug combination is not compatible, even if used right away, and that PS might not be the best vehicle for ceftazidime, emphasizing the importance of the MIC evaluation for drug interactions.
Resumo:
Ceftazidime is a broad spectrum antibiotic administered mainly by the parenteral route, and it is especially effective against Pseudomonas aeruginosa. The period of time in which serum levels exceed the Minimum Inhibitory Concentration (MIC) is an important pharmacodynamic parameter for its efficacy. One of the forms to extend this period is to administer the antibiotic by continuous infusion, after prior dilution in a Parenteral Solution (PS). The present work assessed the stability of ceftazidime in 5% glucose PS for 24 hours, combined or not with aminophylline, through High Performance Liquid Chromatography (HPLC). The physicochemical evaluation was accompanied by in vitro antimicrobial activity compared MIC test in the 24-hour period. Escherichia coli and Pseudomonas aeruginosa were the microorganisms chosen for the MIC comparison. The HPLC analysis confirmed ceftazidime and aminophylline individual stability on PS, while the MIC values were slightly higher than the mean described in the literature. When both drugs were associated in the same PS, the ceftazidime concentration by HPLC decreased 25% after 24 hours. Not only did the MIC values show high loss of antibiotic activity within the same period, but also altered MIC values immediately after the preparation, which was not detected by HPLC. Our results indicate that this drug combination is not compatible, even if used right away, and that PS might not be the best vehicle for ceftazidime, emphasizing the importance of the MIC evaluation for drug interactions.
DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier
Resumo:
Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss) or (ds) double stranded molecules. The affinities of the protein for ss-vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of,3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more effective nucleic acid drug delivery vehicles which take advantage of crotamine as a carrier with specificity for actively proliferating cells. Citation: Chen P-C, Hayashi MAF, Oliveira EB, Karpel RL (2012) DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE 7(11): e48913. doi:10.1371/journal.pone.0048913
Resumo:
Drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. Structure( SBDD) and ligand-based drug design (LBDD) approaches bring together the most powerful concepts in modern chemistry and biology, linking medicinal chemistry with structural biology. The definition and assessment of both chemical and biological space have revitalized the importance of exploring the intrinsic complementary nature of experimental and computational methods in drug design. Major challenges in this field include the identification of promising hits and the development of high-quality leads for further development into clinical candidates. It becomes particularly important in the case of neglected tropical diseases (NTDs) that affect disproportionately poor people living in rural and remote regions worldwide, and for which there is an insufficient number of new chemical entities being evaluated owing to the lack of innovation and R&D investment by the pharmaceutical industry. This perspective paper outlines the utility and applications of SBDD and LBDD approaches for the identification and design of new small-molecule agents for NTDs.
Resumo:
Peroxisome-proliferator-activated receptors are a class of nuclear receptors with three subtypes: a, ? and d. Their main function is regulating gene transcription related to lipid and carbohydrate metabolism. Currently, there are no peroxisome-proliferator-activated receptors d drugs being marketed. In this work, we studied a data set of 70 compounds with a and d activity. Three partial least square models were created, and molecular docking studies were performed to understand the main reasons for peroxisome-proliferator-activated receptors d selectivity. The obtained results showed that some molecular descriptors (log P, hydration energy, steric and polar properties) are related to the main interactions that can direct ligands to a particular peroxisome-proliferator-activated receptors subtype.
Resumo:
Solid dispersions (SDs) are an approach to increasing the water solubility and bioavailability of lipophilic drugs such as ursolic acid (UA), a triterpenoid with trypanocidal activity. In this work, Gelucire 50/13, a surfactant compound with permeability-enhancing properties, and silicon dioxide, a drying adjuvant, were employed to produce SDs with UA. SDs and physical mixtures (PMs) in different drug/carrier ratios were characterized and compared using differential scanning calorimetry, hot stage microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size, water solubility values, and dissolution profiles. Moreover, LLC-MK2 fibroblast cytotoxicity and trypanocidal activity evaluation were performed to determine the potential of SD as a strategy to improve UA efficacy against Chagas disease. The results demonstrated the conversion of UA from the crystalline to the amorphous state through XRD. FTIR experiments provided evidence of intermolecular interactions among the drug and carriers through carbonyl peak broadening in the SDs. These findings helped explain the enhancement of water solubility from 75.98 mu g/mL in PMs to 293.43 mu g/mL in SDs and the faster drug release into aqueous media compared with pure UA or PMs, which was maintained after 6 months at room temperature. Importantly, improved SD dissolution was accompanied by higher UA activity against trypomastigote forms of Trypanosoma cruzi, but not against mammalian fibroblasts, enhancing the potential of UA for Chagas disease treatment.
Resumo:
Photosensitizers (PS) photodynamic activities are regulated by their location in the biological target, which modulates their photophysical and photochemical features. In this work the PS partition for the Xanthene Dyes Fluorescein (FSC), Eosin Y(EOS), Erythrosin B (ERY) and Rose Bengal B (RBB) in biomimetic models (SDS, CTAB and Pluronic P-123 micelles) and the effects on their photophysical characteristics are evaluated. The hydrophobic and electrostatic forces that govern the PS-micelle interaction are analyzed. At physiological pH (7.25), the ability of the dianionic protolytic form of the dyes to be positioned into the micelle palisade and its micelle interaction depends not only on the hydrophobicity of the dye but also on the micellar surface charge. The Binding Constants obey exactly the same order of the Partition Coefficients for the dyes in P-123 and CTAB micelles. The Stern-Volmer treatment pointed out that dyes are located inside the micelle, especially ERY and RBB. The magnitude of the dye-micelle interaction increased from SDS, P-123 and finally CTAB micelles due to the charges between dye and micelle, and among the xanthenes, their hydrophobic characteristics. Within the micelle pseudo phase, ERY and RBB are still very efficient photosensitizers exhibiting high quantum yield of singlet oxygen, which turns them very attractive especially with P-123 polymeric system as drug delivery systems in photodynamic therapy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Malaria is responsible for more than 1.5 million deaths each year, especially among children (Snow et al. 2005). Despite of the severity of malaria situation and great effort to the development of new drug targets (Yuan et al. 2011) there is still a relative low investment toward antimalarial drugs. Briefly there are targets classes of antimalarial drugs currently being tested including: kinases, proteases, ion channel of GPCR, nuclear receptor, among others (Gamo et al. 2010). Here we review malaria signal transduction pathways in Red Blood Cells (RBC) as well as infected RBCs and endothelial cells interactions, namely cytoadherence. The last process is thought to play an important role in the pathogenesis of severe malaria. The molecules displayed on the surface of both infected erythrocytes (IE) and vascular endothelial cells (EC) exert themselves as important mediators in cytoadherence, in that they not only induce structural and metabolic changes on both sides, but also trigger multiple signal transduction processes, leading to alteration of gene expression, with the balance between positive and negative regulation determining endothelial pathology during a malaria infection.