2 resultados para dosimetria termoluminescente

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last few years, low-level light therapy (LLLT) has shown an incredible suitability for a wide range of applications for central nervous system (CNS) related diseases. In this therapeutic modality light dosimetry is extremely critical so the study of light propagation through the CNS organs is of great importance. To better understand how light intensity is delivered to the most relevant neural sites we evaluated optical transmission through slices of rat brain point by point. We experimented red (λ = 660 nm) and near infrared (λ = 808 nm) diode laser light analyzing the light penetration and distribution in the whole brain. A fresh Wistar rat (Rattus novergicus) brain was cut in sagittal slices and illuminated with a broad light beam. A high-resolution digital camera was employed to acquire data of transmitted light. Spatial profiles of the light transmitted through the sample were obtained from the images. Peaks and valleys in the profiles show sites where light was less or more attenuated. The peak intensities provide information about total attenuation and the peak widths are correlated to the scattering coefficient at that individual portion of the sample. The outcomes of this study provide remarkable information for LLLT dose-dependent studies involving CNS and highlight the importance of LLLT dosimetry in CNS organs for large range of applications in animal and human diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low level laser therapy (LLLT) is used in several applications, including the reduction of inflammatory processes. It might be used to prevent the systemic inflammatory response syndrome (SIRS), which some patients develop after cardiopulmonary bypass (CPB) surgery. The objectives of this study were to investigate light distribution inside blood, in order to implement the LLLT during CPB, and, through this study, to determine the best wavelength and the best way to perform the treatment. The blood, diluted to the same conditions of CPB procedure was contained inside a cuvette and an optical fiber was used to collect the scattered light. Two wavelengths were used: 632.8 nm and 820 nm. Light distribution in blood inside CPB tubes was also evaluated. Compared to the 820 nm light, the 632.8 nm light is scattered further away from the laser beam, turning it possible that a bigger volume of blood be treated. The blood should be illuminated through the smallest diameter CPB tube, using at least four distinct points around it, in only one cross section, because the blood is kept passing through the tube all the time and the whole volume will be illuminated.