8 resultados para donor-acceptor complex
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A new series of donor acceptor copolymers were synthesized via the Witting route and applied as an active layer in organic thin-films solar cells. These copolymers are composed of fluorene thiophene and phenylene thiophene units. The ratio between those was systematically varied, and copolymers containing 0%, 50%, and 75% of phenylene thiophene were characterized and evaluated when used in photovoltaic devices. The copolymers' composition, photophysical, electrical, and morphological properties are addressed and correlated with device performance. The 50% copolymer ratio was found to be the best copolymer of the series, yielding a power conversion efficiency (PCE) under air mass (AM) 1.5 conditions of 2.4% in the bilayer heterojunction with the C-60 molecule. Aiming at flexible electronics applications, solutions based on the heterojunction of this copolymer with PCBM (6,6-phenyl-C-61-butyric acid methyl ester) were also successfully deposited using an inkjet printing method and used as an active layer in solar cells.
Resumo:
The cationic dyes 9-aminoacridine (9AA) and safranine (Sf) were entrapped into silica spheres of about 0.2 mu m diameter prepared by modified Stober method. The fluorescent materials are investigated by steady-state and time-resolved emission, in addition of confocal fluorescence microscopy. Silica particles containing 9-aminoacridine (SP9AA) and safranine (SPSf or both dyes (SPSf9AA) are emissive particles. When both dyes are present in the same particle but loaded in sequential stages 9AA emission is quenched as a consequence of energy transfer from 9AA (donor) to Sf (acceptor). This result suggests that particle growing processes where the acceptor is incorporated first into the core do not prevent donor/acceptor pairs to be close due to an overlay of the concentration gradients of both dyes in a radial core-shell like distribution. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Cellular membranes have relevant roles in processes related to proteases like human kallikreins and cathepsins. As enzyme and substrate may interact with cell membranes and associated co-factors, it is important to take into account the behavior of peptide substrates in the lipid environment. In this paper we report an study based on energy transfer in two bradykinin derived peptides labeled with the donor-acceptor pair Abz/Eddnp (ortho-aminobenzoic acid/N-[2,4-dinitrophenyl]-ethylenediamine). Time-resolved fluorescence experiments were performed in phosphate buffer and in the presence of large unilamelar vesicles of phospholipids, and of micelles of sodium dodecyl sulphate (SDS). The decay kinetics were analyzed using the program CONTIN to obtain end-to-end distance distribution functions f(r). Despite of the large difference in the number of residues the end-to-end distance of the longer peptide (9 amino acid residues) is only 20 % larger than the values obtained for the shorter peptide (5 amino acid residues). The proline residue, in position 4 of the bradykinin sequence promotes a turn in the longer peptide chain, shortening its end-to-end distance. The surfactant SDS has a strong disorganizing effect, substantially broadening the distance distributions, while temperature increase has mild effects in the flexibility of the chains, causing small increase in the distribution width. The interaction with phospholipid vesicles stabilizes more compact conformations, decreasing end-to-end distances in the peptides. Anisotropy experiments showed that rotational diffusion was not severely affected by the interaction with the vesicles, suggesting a location for the peptides in the surface region of the bilayer, a result consistent with small effect of lipid phase transition on the peptides conformations.
Resumo:
Neoplasms in children after organ transplantation are related to the type and intensity of immunosuppression and the donorrecipient serostatus, especially in relation to the EpsteinBarr virus. The patient was a two-yr-old female child with biliary atresia who underwent a liver transplantation from a female cadaver donor. Two adults received kidney transplants from the same donor. Nine months after transplantation, one of the adult recipients developed an urothelial tumor in the kidney graft. Imaging tests were repeated monthly in the liver-transplanted child and revealed no abnormalities. However, one yr and two months after the transplantation, the patient developed episodes of fever. At that time, imaging and liver biopsy showed a clear cell tumor of urothelial origin in the graft and the disease was limited to the liver. The patient underwent liver retransplantation, and she is currently free of tumor recurrence. Although rare, the occurrence of tumors in the post-transplant period from cadaver donors, without previously diagnosed tumors, is one of the many problems encountered in the complex world of organ transplantation.
Resumo:
In this study, we investigated the effect of the ruthenium complex [Ru(terpy)(bdq)NO+](3+) (TERPY) on the arterial pressure from renal hypertensive 2 kidney-1 clip (2K-1C) rats, which was compared with sodium nitroprusside (SNP). The most interesting finding was that the intravenous bolus injection of TERPY (2.5, 5.0, 7 mg/kg) had a dose-dependent hypotensive effect only in 2K-1C rats. On the other hand, SNP (35 and 70 mu g/kg) presented a similar hypotensive effect in both normotensive (2K) and 2K-1C although the effect of 70 mu g/kg was >35 mu g/kg. The injection of the nonselective NO-synthase inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME) increased the arterial pressure in 2K and 2K-1C rats with a similar magnitude. After infusion of L-NAME, the hypotensive effect induced by TERPY and SNP was potentiated in both 2K and in 2K-1C rats. The administration of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl increased the hypotensive effect induced by TERPY or SNP in both 2K and 2K-1C rats. The hypotensive effect induced by TERPY was longer than that produced by SNP. Taken together, our results show that the TERPY has a long-lasting hypotensive effect, which has a dose dependence and higher magnitude in 2K-1C compared with in 2K rats. In comparison with SNP, TERPY is less potent in inducing arterial pressure fall, but it presents a much longer hypotensive effect.
Resumo:
Nitric oxide (NO)-donors are pharmacologically active substances that in vivo or in vitro release NO. Their most common side effect is headache caused by cerebral vasodilatation. We previously demonstrated that the new NO-donor Ru(terpy)(bdq)NO](3+) (Terpy), synthesized in our laboratory, induces relaxation of rat aorta. This study aimed to verify the effect of Terpy and sodium nitroprusside (SNP) in basilar artery. We conducted vascular reactivity experiments on endothelium-denuded basilar rings. The concentrations of iron (Fe) and ruthenium (Ru) complex were analyzed in basilar artery lysates after incubation with NO donors by mass spectrometry. We also evaluated the NO released from SNP and Terpy by using confocal microscopy. Interestingly, Terpy did not induce relaxation of the basilar artery. SNP induced relaxation in a concentration-dependent way. NO donors cross the membrane of vascular smooth muscle and entered the cell. In spite of its permeability, Terpy did not release NO in the basilar artery. Otherwise, SNP released NO in the basilar artery cells cytoplasm. Taken together, our results demonstrate that the new NO donor (Terpy) failed to release NO and to induce relaxation in the basilar artery. The NO donor SNP induces vascular relaxation due to NO release in the vascular smooth muscle cells. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nitrosyl ruthenium complexes are promising NO donor agents with numerous advantages for the biologic applications of NO. We have characterized the NO release from the nitrosyl ruthenium complex [Ru(NO2)(bpy)(2)(4-pic)](+) (I) and the reactive oxygen/nitrogen species (ROS/RNS)-mediated NO actions on isolated rat liver mitochondria. The results indicated that oxidation of mitochondrial NADH promotes NO release from (I) in a manner mediated by NO2 formation (at neutral pH) as in mammalian cells, followed by an oxygen atom transfer mechanism (OAT). The NO released from (I) uncoupled mitochondria at low concentrations/incubation times and inhibited the respiratory chain at high concentrations/incubation times. In the presence of ROS generated by mitochondria NO gave rise to peroxynitrite, which, in turn, inhibited the respiratory chain and oxidized membrane protein-thiols to elicit a Ca2+-independent mitochondrial permeability transition; this process was only partially inhibited by cyclosporine-A, almost fully inhibited by the thiol reagent N-ethylmaleimide (NEM) and fully inhibited by the NO scavenger 2-(4-carboxyphenyl)-4,45,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). These actions correlated with the release of cytochrome c from isolated mitochondria as detected by Western blotting analysis. These events, typically involved in cell necrosis and/or apoptosis denote a potential specific action of (I) and analogs against tumor cells via mitochondria-mediated processes. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Drugs that release nitric oxide (NO) usually have limitations due to their harmful effects. Sodium nitroprusside (SNP) induces a rapid hypotension that leads to reflex tachycardia, which could be an undesirable effect in patients with heart disease, a common feature of hypertension. The nitrosyl ruthenium complex [Ru(terpy)(bdq)NO+](3+) (TERPY) is a NO donor that is less potent than SNP in denuded aortic rings. This study evaluated the hypotension and vasorelaxation induced by this NO donor in Wistar (W) and spontaneously hypertensive rats (SHR) and compared to the results obtained with SNP. Differently from the hypotension induced by SNP, the action of TERPY was slow, long lasting and it did not lead to reflex tachycardia in both groups. The hypotension induced by the NO-donors was more potent in SHR than in W. TERPY induced relaxation with similar efficacy to SNP, although its potency is lower in both strains. The relaxation induced by TERPY is similar in W and SHR, but SNP is more potent and efficient in SHR. The relaxation induced by TERPY is partially dependent on guanylate cyclase in SHR aorta. The NO released from the NO donors measured with DAF-2 DA by confocal microscopy shows that TERPY releases similar amounts of NO in W and SHR, while SNP releases more NO in SHR aortic rings. (c) 2012 Elsevier Inc. All rights reserved.