34 resultados para distrofia muscular de Duchenne

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distrofia muscular de Duchenne é uma doença genética caracterizada por enfraquecimento muscular progressivo e degeneração irreversível, acompanhados por danos sensoriais e neuropsicológicos. Os objetivos do estudo consistiram em avaliar o perfil comportamental de crianças/adolescentes com DMD e a influência do prejuízo motor, da idade no início do uso de cadeira de rodas e da idade no diagnóstico. Participaram 34 pacientes e 20 controles. Os pacientes formaram dois grupos conforme o quociente de inteligência (QI). Os pais responderam ao Inventário de Comportamentos da Infância e da Adolescência. Pacientes com DMD obtiveram escores mais baixos em Atividades e Sociabilidade (p < 0,01; ANCOVA). Os pacientes com QI < 80 apresentaram menores índices de Escolaridade. O prejuízo motor e as idades referentes à cadeira e ao diagnóstico correlacionaram-se com sintomas psiquiátricos/somáticos e problemas escolares. Os achados enfatizam a necessidade de programas educacionais acerca da doença como base para o desenvolvimento de estratégias de inclusão social.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Distrofia Muscular de Duchenne (DMD) é uma miopatia severa de caráter recessivo ligada ao cromossomo X e o modelo animal de estudo mais relevante é o Golden Retriever Muscular Dystrophy (GRMD). Além das severas alterações que ocorrem na musculatura estriada, muitos estudos mostram que outras estruturas, inclusive viscerais, podem se mostrar alteradas nesta patologia. Desta forma, este trabalho objetivou análisar e comparar possíveis alterações estruturais e funcionais do rim em cães GRMD. Neste modelo de estudo, foi possível observar a presença das faces convexa e côncava, do hilo renal e dos pólos craniais e caudais dos rins. O órgão mostrou-se envolto por uma cápsula fibrosa. Em um corte sagital do órgão, notou-se a presença das regiões cortical e medular e da pelve renal. Na análise microscópica foi possível identificar a zona medular e cortical com suas estruturas: os corpúsculos renais formados pelo glomérulo e pela cápsula de Bowman, os túbulos contorcidos proximais e distais, os ductos coletores, vasos sanguíneos e os segmentos das Alças de Henle. As dosagens séricas de creatinina e uréia encontram-se dentro dos limites de normalidade. Desta forma, de acordo com os nossos resultados, podemos concluir que os animais afetados estudados, não apresentaram alterações estruturais ou funcionais dos rins, o que nos permitir sugerir que apesar da ingestão hídrica comprometida, a estrutura renal, mantem- se preservada nos animais GRMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the evolution of motor function in patients with Duchenne muscular dystrophy (DMD) treated with steroids (prednisolone or deflazacort) through the Motor Function Measure (MFM), which evaluates three dimensions of motor performance (D1, D2, D3). Methods: Thirty-three patients with DMD (22 ambulant, 6 non-ambulant and 5 who lost the capacity to walk during the period of the study) were assessed using the MFM scale six times over a period of 18 months. Results: All the motor functions remained stable for 14 months in all patients, except D1 for those who lost their walking ability. In ambulant patients, D2 (axial and proximal motor capacities) motor functions improved during six months; an improvement in D3 (distal motor capacity) was noted during the total follow-up. D1 (standing posture and transfers) and total score were useful to predict the loss of the ability to walk. Conclusions: The use of the MFM in DMD patients confirms the benefits of the steroid treatment for slowing the progression of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background:The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The genetically determined muscular dystrophies are caused by mutations in genes coding for muscle proteins. Differences in the phenotypes are mainly the age of onset and velocity of progression. Muscle weakness is the consequence of myofiber degeneration due to an imbalance between successive cycles of degeneration/regeneration. While muscle fibers are lost, a replacement of the degraded muscle fibers by adipose and connective tissues occurs. Major investigation points are to elicit the involved pathophysiological mechanisms to elucidate how each mutation can lead to a specific degenerative process and how the regeneration is stimulated in each case. To answer these questions, we used four mouse models with different mutations causing muscular dystrophies, Dmd (mdx) , SJL/J, Large (myd) and Lama2 (dy2J) /J, and compared the histological changes of regeneration and fibrosis to the expression of genes involved in those processes. For regeneration, the MyoD, Myf5 and myogenin genes related to the proliferation and differentiation of satellite cells were studied, while for degeneration, the TGF-beta 1 and Pro-collagen 1 alpha 2 genes, involved in the fibrotic cascade, were analyzed. The result suggests that TGF-beta 1 gene is activated in the dystrophic process in all the stages of degeneration, while the activation of the expression of the pro-collagen gene possibly occurs in mildest stages of this process. We also observed that each pathophysiological mechanism acted differently in the activation of regeneration, with distinctions in the induction of proliferation of satellite cells, but with no alterations in stimulation to differentiation. Dysfunction of satellite cells can, therefore, be an important additional mechanism of pathogenesis in the dystrophic muscle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The diaphragm is the major respiratory muscle affected by Duchenne muscular dystrophy (DMD) and is responsible for causing 80% of deaths. The use of mechanical forces that act on the body or intermittent pressure on the airways improves the quality of life of patients but does not prevent the progression of respiratory failure. Thus, diseases that require tissue repair, such as DMD, represent a group of pathologies that have great potential for cell therapy. The application of stem cells directly into the diaphragm instead of systemic application can reduce cell migration to other affected areas and increase the chances of muscle reorganisation. The mdx mouse is a suitable animal model for this research because its diaphragmatic phenotype is similar to human DMD. Therefore, the aim of this study was to assess the potential cell implantation in the diaphragm muscle after the xenotransplantation of stem cells. Methods: A total of 9 mice, including 3 control BALB/Cmice, 3 5-month-old mdx mice without stem cell injections and 3 mdx mice injected with stem cells, were used. The animals injected with stem cells underwent laparoscopy so that stem cells from GFP-labelled rabbit olfactory epithelium could be locally injected into the diaphragm muscle. After 8 days, all animals were euthanised, and the diaphragm muscle was dissected and subjected to histological and immunohistochemical analyses. Results: Both the fresh diaphragm tissue and immunohistochemical analyses showed immunopositive GFP labelling of some of the cells and immunonegativity of myoblast bundles. In the histological analysis, we observed a reduction in the inflammatory infiltrate as well as the presence of a few peripheral nuclei and myoblast bundles. Conclusion: We were able to implant stem cells into the diaphragm via local injection, which promoted moderate muscle reorganisation. The presence of myoblast bundles cannot be attributed to stem cell incorporation because there was no immunopositive labelling in this structure. It is believed that the formation of the bundles may have been stimulated by cellular signalling mechanisms that have not yet been elucidated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, is the most common and severe form of muscular dystrophies, affecting I in 3,500 male births. Mutations in the DMD gene lead to the absence of muscle dystrophin and a progressive degeneration of skeletal muscle. The possibility to treat DMD through cell therapy has been widely investigated. We have previously shown that human adipose-derived stromal cells (hASCs) injected systemically in SJL mice are able to reach and engraft in the host muscle, express human muscle proteins, and ameliorate the functional performance of injected animals without any immunosuppression. However, before starting clinical trials in humans many questions still need to be addressed in preclinical studies, in particular in larger animal models, when available. The best animal model to address these questions is the golden retriever muscular dystrophy (GRMD) dog that reproduces the full spectrum of human DMD. Affected animals carry a mutation that predicts a premature termination codon in exon 8 and a peptide that is 5% the size of normal dystrophin. These dogs present clinical signs within the first weeks and most of them do not survive beyond age two. Here we show the results of local and intravenous injections of hASCs into GRMD dogs, without immunosuppression. We observed that hASCs injected systemically into the dog cephalic vein are able to reach, engraft, and express human dystrophin in the host GRMD dystrophic muscle up to 6 months after transplantation. Most importantly, we demonstrated that injecting a huge quantity of human mesenchymal cells in a large-animal model, without immunosuppression, is a safe procedure, which may have important applications for future therapy in patients with different forms of muscular dystrophies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dystrophin gene, located at Xp21, codifies dystrophin, which is part of a protein complex responsible for the membrane stability of muscle cells. Its absence on muscle causes Duchenne Muscular Dystrophy (DMD), a severe disorder, while a defect of muscle dystrophin causes Becker Muscular Dystrophy (DMB), a milder disease. The replacement of the defective muscle through stem cells transplantation is a possible future treatment for these patients. Our objective was to analyze the potential of CD34+ stem cells from umbilical cord blood to differentiate in muscle cells and express dystrophin, in vitro. Protein expression was analyzed by Immunofluorescence, Western Blotting (WB) and Reverse Transcriptase – Polymerase Chain Reaction (RT-PCR). CD34+ stem cells and myoblasts from a DMD affected patient started to fuse with muscle cells immediately after co-cultures establishment. Differentiation in mature myotubes was observed after 15 days and dystrophin-positive regions were detected through Immunofluorescence analysis. However, WB or RT-PCR analysis did not detect the presence of normal dystrophin in co-cultures of CD34+ and DMD or DMB affected patients' muscle cells. In contrast, some CD34+ stem cells differentiated in dystrophin producers' muscle cells, what was observed by WB, reinforcing that this progenitor cell has the potential to originate muscle dystrophin in vitro, and not just in vivo like reported before.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe a large Brazilian consanguineous kindred with 3 clinically affected patients with a Thomsen myotonia phenotype. They carry a novel homozygous nonsense mutation in the CLCN1 gene (K248X). None of the 6 heterozygote carriers show any sign of myotonia on clinical evaluation or electromyography. These findings confirm the autosomal recessive inheritance of the novel mutation in this family, as well as the occurrence of phenotypic variability in the autosomal recessive forms of myotonia. Muscle Nerve, 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Duchenne muscular dystrophy (DMD) is a sex-linked inherited muscle disease characterized by a progressive loss in muscle strength and respiratory muscle involvement. After 12 years of age, lung function declines at a rate of 6 % to 10.7 % per year in patients with DMD. Steroid therapy has been proposed to delay the loss of motor function and also the respiratory involvement. Method In 21 patients with DMD aged between seven and 16 years, the forced vital capacity (FVC) and the forced expiratory volume in one second (FEV1) were evaluated at three different times during a period of two years. Results We observed in this period of evaluation the maintenance of the FVC and the FEV1 in this group of patients independently of chronological age, age at onset of steroid therapy, and walking capacity. Conclusion The steroid therapy has the potential to stabilize or delay the loss of lung function in DMD patients even if they are non-ambulant or older than 10 years, and in those in whom the medication was started after 7 years of age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent progress in scientific research has facilitated accurate genetic and neuropathological diagnosis of congenital myopathies. However, given their relatively low incidence, congenital myopathies remain unfamiliar to the majority of care providers, and the levels of patient care are extremely variable. This consensus statement aims to provide care guidelines for congenital myopathies. The International Standard of Care Committee for Congenital Myopathies worked through frequent e-mail correspondences, periodic conference calls, 2 rounds of online surveys, and a 3-day workshop to achieve a consensus for diagnostic and clinical care recommendations. The committee includes 59 members from 10 medical disciplines. They are organized into 5 working groups: genetics/diagnosis, neurology, pulmonology, gastroenterology/nutrition/speech/oral care, and orthopedics/rehabilitation. In each care area the authors summarize the committee's recommendations for symptom assessments and therapeutic interventions. It is the committee's goal that through these recommendations, patients with congenital myopathies will receive optimal care and improve their disease outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvement in DNA technology is increasingly revealing unexpected/unknown mutations in healthy persons and generating anxiety due to their still unknown health consequences. We report a 44-year-old healthy father of a 10-year-old daughter with bilateral coloboma and hearing loss, but without muscle weakness, in whom a whole-genome CGH revealed a deletion of exons 38-44 in the dystrophin gene. This mutation was inherited from her asymptomatic father, who was further clinically and molecularly evaluated for prognosis and genetic counseling (GC). This deletion was never identified by us in 982 Duchenne/Becker patients. To assess whether the present case represents a rare case of non-penetrance, and aiming to obtain more information for prognosis and GC, we suggested that healthy older relatives submit their DNA for analysis, to which several complied. Mutation analysis revealed that his mother, brother, and 56-year-old maternal uncle also carry the 38-44 deletion, suggesting it an unlikely cause of muscle weakness. Genome sequencing will disclose mutations and variants whose health impact are still unknown, raising important problems in interpreting results, defining prognosis, and discussing GC. We suggest that, in addition to family history, keeping the DNA of older relatives could be very informative, in particular for those interested in having their genome sequenced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facioscapulohumeral muscular dystrophy (FSHD) is a common hereditary myopathy causally linked to reduced numbers (<= 8) of 3.3 kilobase D4Z4 tandem repeats at 4q35. However, because individuals carrying D4Z4-reduced alleles and no FSHD and patients with FSHD and no short allele have been observed, additional markers have been proposed to support an FSHD molecular diagnosis. In particular a reduction in the number of D4Z4 elements combined with the 4A(159/161/168)PAS haplotype (which provides the possibility of expressing DUX4) is currently used as the genetic signature uniquely associated with FSHD. Here, we analyzed these DNA elements in more than 800 Italian and Brazilian samples of normal individuals unrelated to any FSHD patients. We find that 3% of healthy subjects carry alleles with a reduced number (4-8) of D4Z4 repeats on chromosome 4q and that one-third of these alleles, 1.3%, occur in combination with the 4A161PAS haplotype. We also systematically characterized the 4q35 haplotype in 253 unrelated FSHD patients. We find that only 127 of them (50.1%) carry alleles with 1-8 D4Z4 repeats associated with 4A161PAS, whereas the remaining FSHD probands carry different haplotypes or alleles with a greater number of D4Z4 repeats. The present study shows that the current genetic signature of FSHD is a common polymorphism and that only half of FSHD probands carry this molecular signature. Our results suggest that the genetic basis of FSHD, which is remarkably heterogeneous, should be revisited, because this has important implications for genetic counseling and prenatal diagnosis of at-risk families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of anatomical variations of the musculoskeletal system is important for interpreting unusual clinical presentations. We observed the presence of an abnormal extensor indicis muscle in the left hand of an adult male cadaver. In this case, the muscle comes from the ligament and over the scaphoideum and trapezoideum bones and continues after the short muscle belly; it is attached to the dorsal aponeurosis of the indicis. This muscular disposition was described in other studies which demonstrated approximately 1.0% of incidence. Clinically, this anatomical variation may be associated with pain and swelling at the back of the hand. In these cases symptoms tend to increase due to mechanical stress and can be confused with the presence of a dorsal synovial cyst. This report will help clinicians, surgeons, occupational and physical therapists formulate better clinical or surgical decisions when presented with a rare anatomical variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the percutaneous muscle biopsy technique is recognized as one of the most important scientific contributions in advancing our understanding of skeletal muscle physiology. However, a concern that this procedure may be associated with adverse events still exists. We reported the incidence of adverse outcomes associated with percutaneous muscle biopsy in healthy and diseased subjects. Medical records of 274 volunteers (496 muscle biopsies) were reviewed. This included 168 healthy subjects (330 muscle biopsies) as well as 106 chronically ill patients (166 muscle biopsies). This latter group encompassed patients with type II diabetes (n=28), osteoarthritis (n=39), inclusion body myositis (n=4), polymyositis (n=4), and chronic heart failure (n=31). The most common occurrences were pain (1.27%), erythema (1.27%), and ecchymosis (1.27%). Panic episode, bleeding, and edema were also reported (0.21%, 0.42%, and 0.84%, respectively), while infection, hematoma, inflammation, denervation, numbness, atrophy, and abnormal scarring were not verified. The percent of incidents did not differ between healthy and ill individuals. In conclusion, the incidence of complications associated with percutaneous muscle biopsy is scarce and of minor clinical relevance. Additionally, the rate of adverse events is comparable between healthy and chronically ill subjects.