13 resultados para direct-subtracting method
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Black carbon (BC) is an important fraction of many soils worldwide and plays an important role in global C biogeochemistry. However, few studies have examined how it influences the mineralization of added organic matter (AOM) and its incorporation into soil physical fractions and whether BC decomposition is increased by AOM. BC-rich Anthrosols and BC-poor adjacent soils from the Central Amazon (Brazil) were incubated for 532 days either with or without addition of (13)C-isotopically different plant residue. Total C mineralization from the BC-rich Anthrosols with AOM was 25.5% (P < 0.05) lower than with mineralization from the BC-poor adjacent soils. The AOM contributed to a significantly (P < 0.05) higher proportion to the total C mineralized in the BC-rich Anthrosols (91-92%) than the BC-poor adjacent soils (69-80%). The AOM was incorporated more rapidly in BC-rich than BC-poor soils from the separated free light fraction through the intra-aggregate light fraction into the stable organo-mineral fraction and up to 340% more AOM was found in the organo-mineral fraction. This more rapid stabilization was observed despite a significantly (P < 0.05) lower metabolic quotient for BC-rich Anthrosols. The microbial biomass (MB) was up to 125% greater (P < 0.05) in BC-rich Anthrosols than BC-poor adjacent soils. To account for increased MB adsorption onto BC during fumigation extraction, a correction factor was developed via addition of a (13)C-enriched microbial culture. The recovery was found to be 21-41 % lower (P < 0.05) for BC-rich than BC-poor soils due to re-adsorption of MB onto BC. Mineralization of native soil C was enhanced to a significantly greater degree in BC-poor adjacent soils compared to BC-rich Anthrosols as a result of AOM. No positive priming by way of cometabolism due to AOM could be found for aged BC in the soils. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A direct reconstruction algorithm for complex conductivities in W-2,W-infinity(Omega), where Omega is a bounded, simply connected Lipschitz domain in R-2, is presented. The framework is based on the uniqueness proof by Francini (2000 Inverse Problems 6 107-19), but equations relating the Dirichlet-to-Neumann to the scattering transform and the exponentially growing solutions are not present in that work, and are derived here. The algorithm constitutes the first D-bar method for the reconstruction of conductivities and permittivities in two dimensions. Reconstructions of numerically simulated chest phantoms with discontinuities at the organ boundaries are included.
Resumo:
Implementing precise techniques in routine diagnosis of chronic granulomatous disease (CGD), which expedite the screening of molecular defects, may be critical for a quick assumption of patient prognosis. This study compared the efficacy of single-strand conformation polymorphism analysis (SSCP) and high-performance liquid chromatography under partially denaturing conditions (dHPLC) for screening mutations in CGD patients. We selected 10 male CGD patients with a clinical history of severe recurrent infections and abnormal respiratory burst function. gDNA, mRNA and cDNA samples were prepared by standard methods. CYBB exons were amplified by PCR and screened by SSCP or dHPLC. Abnormal DNA fragments were sequenced to reveal the nature of the mutations. The SSCP and dHPLC methods showed DNA abnormalities, respectively, in 55% and 100% of the cases. Sequencing of the abnormal DNA samples confirmed mutations in all cases. Four novel mutations in CYBB were identified which were picked up only by the dHPLC screening (c.904 insC, c.141+5 g>t, c.553 T>C, and c.665 A>T). This work highlights the relevance of dHPLC, a sensitive, fast, reliable and cost-effective method for screening mutations in CGD, which in combination with functional assays assessing the phagocyte respiratory burst will contribute to expedite the definitive diagnosis of X-linked CGD, direct treatment, genetic counselling and to have a clear assumption of the prognosis. This strategy is especially suitable for developing countries.
Resumo:
This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH2, PtO2, SnO2 and IrO2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded.
Resumo:
A recent addition to the arsenal of tools for glycome analysis is the use of metabolic labels that allow covalent tagging of glycans with imaging probes. In this work we show that N-azidoglucosamine was successfully incorporated into glycolipidic structures of Plasmodium falciparum intraerythrocytic stages. The ability to tag glycoconjugates selectively with a fluorescent reporter group permits TLC detection of the glycolipids providing a new method to quantify dynamic changes in the glycosylation pattern and facilitating direct mass spectrometry analyses. Presence of glycosylphosphatidylinositol and glycosphingolipid structures was determined in the different extracts. Furthermore, the fluorescent tag was used as internal matrix for the MALDI experiment making even easier the analysis. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Carbon-supported Pt-based electrocatalysts were synthesized by Pechini method for the ethanol oxidation (EOR). Physicochemical characterizations were helpful to estimate the diameters of the obtained materials ranging from 2 nm to 5 nm. Main electrochemical experiments were carried out at 90 degrees C i.e. under the working conditions of performing the single 5 cm(2) direct ethanol fuel cell (DEFC). Pt(80)Sn(20)/C was the anode catalyst which has given the highest power density of 37 mW cm(-2). Importantly, the IR spectroscopy measurements associated with the qualitative analysis done at the output of the anodic compartment of the fuel cell have shown that ethanol oxidation on Pt(80)Sn(20)/C was mainly a two-electron sustainable process. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We report the measurement of direct photons at midrapidity in Au + Au collisions at root s(NN) = 200 GeV. The direct photon signal was extracted for the transverse momentum range of 4 GeV/c < pT < 22 GeV/c, using a statistical method to subtract decay photons from the inclusive photon sample. The direct photon nuclear modification factor R-AA was calculated as a function of p(T) for different Au + Au collision centralities using the measured p + p direct photon spectrum and compared to theoretical predictions. R-AA was found to be consistent with unity for all centralities over the entire measured pT range. Theoretical models that account for modifications of initial direct photon production due to modified parton distribution functions in Au and the different isospin composition of the nuclei predict a modest change of R-AA from unity. They are consistent with the data. Models with compensating effects of the quark-gluon plasma on high-energy photons, such as suppression of jet-fragmentation photons and induced-photon bremsstrahlung from partons traversing the medium, are also consistent with this measurement.
Resumo:
In this article, it is proposed to differentiate political cultures in two dimensions. First, inspired by Habermas' distinction of the contents of discourse, a distinction is suggested between moral, ethical-political and pragmatic elements of political culture as well as of an element of culture of balancing interests. Second, inspired by Kohlberg's stage models for the development of the individual moral consciousness and for moral culture, a distinction is similarly suggested between two pre-conventional, two conventional and two post-conventional collective stages of political culture. It can be shown that from a normative point of view, only deliberations made in a post-conventional political culture can produce reasonable or at least fair results. Conceptual considerations indicate processes of direct democracy as the method for promoting post-conventional political cultures. The more liberty that the citizens have to formulate and trigger processes of direct democracy, the more one can expect from them to generate post-conventional political cultures.
Resumo:
A new measurement of the B-11(p,alpha(0))Be-8 has been performed applying the Trojan horse method (THM) to the H-2(B-11,alpha Be-8(0))n quasi-free reaction induced at a laboratory energy of 27 MeV. The astrophysical S(E) factor has been extracted from similar to 600 keV down to zero energy by means of an improved data analysis technique and it has been compared with direct data available in the literature. The range investigated here overlaps with the energy region of the light element LiBeB stellar burning and with that of future aneutronic fusion power plants using the B-11+p fuel cycle. The new investigation described here confirms the preliminary results obtained in the recent TH works. The origin of the discrepancy between the direct estimate of the B-11(p,alpha(0))Be-8 S(E)-factor at zero energy and that from a previous THM investigation is quantitatively corroborated. The results obtained here support, within the experimental uncertainties, the low-energy S(E)-factor extrapolation and the value of the electron screening potential deduced from direct measurements.
Resumo:
Chitosan/poly(vinyl sulfonic acid) (PVS) films have been prepared on Nafion® membranes by the layer-by-layer (LbL) method for use in direct methanol fuel cell (DMFC). Computational methods and Fourier transform infrared (FTIR) spectra suggest that an ionic pair is formed between the sulfonic group of PVS and the protonated amine group of chitosan, thereby promoting the growth of LbL films on the Nafion® membrane as well as partial blocking of methanol. Chronopotentiometry and potential linear scanning experiments have been carried out for investigation of methanol crossover through the Nafion® and chitosan/PVS/Nafion® membranes in a diaphragm diffusion cell. On the basis of electrical impedance measurements, the values of proton resistance of the Nafion® and chitosan/PVS/Nafion® membranes are close due to the small thickness of the LbL film. Thus, it is expected an improved DMFC performance once the additional resistance of the self-assembled film is negligible compared to the result associated with the decrease in the crossover effect.
Resumo:
This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH2, PtO2, SnO2 and IrO2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded.
Resumo:
Piezoelectric ceramics, such as PZT, can generate subnanometric displacements, bu t in order to generate multi- micrometric displacements, they should be either driven by high electric voltages (hundreds of volts ), or operate at a mechanical resonant frequency (in narrow band), or have large dimensions (tens of centimeters). A piezoelectric flextensional actuator (PFA) is a device with small dimensions that can be driven by reduced voltages and can operate in the nano- and micro scales. Interferometric techniques are very adequate for the characterization of these devices, because there is no mechanical contact in the measurement process, and it has high sensitivity, bandwidth and dynamic range. A low cost open-loop homodyne Michelson interferometer is utilized in this work to experimentally detect the nanovi brations of PFAs, based on the spectral analysis of the interfero metric signal. By employing the well known J 1 ...J 4 phase demodulation method, a new and improved version is proposed, which presents the following characteristics: is direct, self-consistent, is immune to fading, and does not present phase ambiguity problems. The proposed method has resolution that is similar to the modified J 1 ...J 4 method (0.18 rad); however, differently from the former, its dynamic range is 20% larger, does not demand Bessel functions algebraic sign correction algorithms and there are no singularities when the static phase shift between the interferometer arms is equal to an integer multiple of /2 rad. Electronic noise and random phase drifts due to ambient perturbations are taken into account in the analysis of the method. The PFA nanopositioner characterization was based on the analysis of linearity betw een the applied voltage and the resulting displacement, on the displacement frequency response and determination of main resonance frequencies.