3 resultados para diopside

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major and trace-element microanalyses of the main minerals from the 610 Ma Pedra Branca Syenite, southeast Brazil, allow inferences on intensive parameters of magmatic crystallization and on the partition of trace-elements among these minerals, with important implications for the petrogenetic evolution of the pluton. Two main syenite types make up the pluton, a quartz-free syenite with tabular alkali feldspar (laminated silica-saturated syenite, LSS, with Na-rich augite + phlogopite + hematite + magnetite + titanite + apatite) and a quartz-bearing syenite (laminated silica-oversaturated syenite, LSO, with scarce corroded plagioclase plus diopside + biotite +/- hornblende + ilmenite magnetite +/- titanite + apatite). Both types share a remarkable enrichment in incompatible elements as K, Ba, Sr, P and LREE. Apatite saturation temperatures of similar to 1060-1090 degrees C are the best estimates of liquidus, whereas the pressure of emplacement, based on Al-in-hornblende barometry, is estimated as 3.3 to 4.8 khan Although both units crystallized under oxidizing conditions, oxygen fugacity was probably higher in LSS, as shown by higher mg# of the mafic minerals and higher hematite contents in Hem-Ilm(ss). In contrast with the Ca-bearing alkali-feldspar from LSO, which hosts most of the whole-rock Sr and Pb, virtually Ca-free alkali-feldspar from LSS hosts similar to 50% of whole-rock Sr and similar to 80% of Pb, the remainder of these elements being shared by apatite, pyroxene and titanite. This contrast reflects a strong crystal-chemical control, whereby a higher proportion of an element with similar ratio and charge (Ca2+) enhances the residence of Sr and Pb in the M-site of alkali feldspar. The more alkaline character of the LSS magma is inferred to have inhibited zircon saturation; Zr + Hf remained in solution until late in the crystallization, and were mostly accommodated in the structure of Ca-Na pyroxene and titanite, which are one order of magnitude richer in these elements compared to the same minerals in LSO, where most of Zr and Hf are inferred to reside in zircon. The REE, Th and U reside mostly in titanite and apatite; D(REE)Tit/Ap raises steadily from 1 to 6 from La to Tb then remains constant up to Lu in the LSO sample; these values are about half as much in the LSS sample, where lower contents of incompatible elements in titanite are attributed to its greater modal abundance and earlier crystallization. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cretaceous Banhado alkaline complex in southeastern Brazil presents two potassic SiO2-undersaturated series. The high-Ca magmatic series consist of initially fractionated olivine (Fo(92-91)) + diopside (Wo(48-43)En(49-35)Ae(0-7)), as evidenced by the presence of xenocrysts and xenoliths. In that sequence, diopside (Wo(47-38)En(46-37)Ae(0-8)) + phlogopite + apatite + perovskite (Prv(> 92)) crystallized to form the phlogopite melteigite and led to the Ca enrichment of the magma. Diopside (Wo(47-41)En(32-24) Ae(3-14)) continued to crystallize as an early mafic mineral, followed by nepheline (Ne(74.8-70.1)Ks(26.3-21.2)Qz(7.6-0.9)) and leucite (Lc(65-56)) and subsequently by melanite and potassic feldspar (Or(85-99)Ab(1-7)) to form melanite ijolites, wollastonite-melanite urtites and melanite-nepheline syenites. Melanite-pseudoleucite-nepheline syenites are interpreted to be a leucite accumulation. Melanite nephelinite dykes are believed to represent some of the magmatic differentiation steps. The low-Ca magmatic series is representative of a typical fractionation of aegirine-augite (Wo(36-29)En(25-4)Ae(39-18)) + alkali feldspar (Or(57-96)Ab(3-43)) + nepheline (Ne(76.5-69.0)Ks(19.9-14.4)Qz(15.1-7.7)) + titanite from phonolite magma. The evolution of this series from potassic nepheline syenites to sodic sodalite syenites and sodalitolites is attributed to an extensive fractionation of potassic feldspar, which led to an increase of the NaCl activity in the melt during the final stages forming sodalite-rich rocks. Phonolite dykes followed a similar evolutionary process and also registered some crustal assimilation. The mesocratic nepheline syenites showed interactions with phlogopite melteigites, such as compatible trace element enrichments and the presence of diopside xenocrysts, which were interpreted to be due to a mixing/mingling process of phonolite and nephelinite magmas. The geochemical data show higher TiO2 and P2O5 contents and lower SiO2 contents for the high-Ca series and different LILE evolution trends and REE chondrite-normalized patterns as compared to the low-Ca series. The Sr-87/Sr-86, Nd-143/Nd-144, Pb-206/Pb-204 and Pb-208/Pb-204 initial ratios for the high-Ca series (0.70407-0.70526, 0.51242-0.51251, 17.782-19.266 and 38.051-39.521, respectively) were slightly different from those of the low-Ca series (0.70542-0.70583, 0.51232-0.51240, 17.758-17.772 and 38.021-38.061, respectively). For both series, a CO2-rich potassic metasomatized lithospheric mantle enriched the source with rutile-bearing phlogopite clinopyroxenite veins. Kamafugite-like parental magma is attributed to the high-Ca series with major contributions from the melting of the veins. Potassic nephelinite-like parental magma is assigned to the low-Ca series, where the metasomatized wall-rock played a more significant role in the melting process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gameleira lamprophyres are dykes and mafic microgranular enclaves associated with the shoshonitic Gameleira monzonite. This association belongs to the Paleoproterozoic alkaline magmatism from Serrinha nucleus, northeast Brazil. The liquidus paragenesis is diopside, pargasite, apatite and mica. Reverse zoning was identified in the groundmass alkali feldspar and was related to the undercooling of lamprophyric magma during the emplacement, with high growth rate of pargasite/edenite inducing disequilibrium between feldspars and liquid. Chemical data indicate that the lamprophyres are basic rocks (SiO2 < 48 wt%), with alkaline character (Na2O + K2O > 3 wt%) and potassic signature (K2O/Na2O ≈ 2). High contents of MgO and Cr are consistent with a signature of a primary liquid, and such concentrations, as well as Al, K, P, Ba, Ni- and light rare earth elements, are consistent with an olivine-free metasomatic mantle source enriched in amphibole, clinopyroxene and apatite. By contrast, the ultrapotassic lamprophyres from Morro do Afonso, contemporaneous alkaline ultrapotassic magmatism in Serrinha nucleus, were probably produced by melting of a clinopyroxene-phlogopite-apatite enriched-source. The identification of different mineral paragenesis in the source of potassic and ultrapotassic lamprophyres from Serrinha nucleus can contribute to the understanding of the mantle heterogeneities and tectonic evolution of this region.