10 resultados para delta 15N, organic matter
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Organic matter quality, expressed as the proportion of chlorophyll a (Chl a) to degraded organic material (i.e. phaeopigments), is known to influence the structure of benthic associations and plays an important role in the functioning of the ecosystem. This study investigates the vertical distribution of microbial biomass, meiofauna and macrofauna with respect to organic matter variation in Ubatuba, Brazil, a southeastern, subtropical coastal area. On three occasions, samples were collected in exposed and sheltered stations, at high and low hydrodynamic conditions. We hypothesize that benthic assemblages will have high meio- and macrofaunal densities and high microbial biomass at the sediment surface at the sheltered site, and lower and vertically homogeneous microbial biomass and densities of meio- and macrofauna are expected at the exposed site. The accumulation of fresh organic matter at the sediment surface was observed at both stations over the three sampling dates, which contributed to the higher densities of meiofauna in the first layers of the sediment column. Macrofauna followed the same trend only at the exposed station, but changes in the number of species, biodiversity and feeding groups were registered for both stations. Microbial biomass increased at the sheltered station over the three sampling dates, whereas at the exposed station, microbial biomass was nearly constant. Physical exposure did not influence organic matter loading at the sites and therefore did not affect overall structure of benthic assemblages, which negates our original hypothesis. Most of the benthic system components reacted to organic matter quality and quantity, but relationships between different-sized organisms (i.e. competition and/or predation) may explain the unchanged microbial profiles at the exposed site and homogeneous vertical distribution of macrofauna at the sheltered site. In conclusion, the high quality of organic matter was a crucial factor in sustaining and regulating the benthic system, but coupled results showed that interactions between micro-, meio- and macrofauna can be highly complex.
Resumo:
Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates, and growth efficiencies were studied in the Northern region of the Cananeia-Iguape estuarine system, which has recently experienced an intense eutrophication due to anthropogenic causes. Two surveys were carried out during spring and neap tide periods of the dry season of 2005 and the rainy season of 2006. This region receives large freshwater inputs with organic seston and phosphate concentrations that reach as high as 1.0 mg l(-1) and 20.0 mu M, respectively. Strong decreasing gradients of seston and dissolved inorganic nutrients were observed from the river/estuary boundary to the estuary/coastal interface. Gradients were also observed in phytoplankton and bacterial production rates. The production rates of phytoplankton were 5.6-fold higher (mean 8.5 mu g Cl(-1) h(-1)) during the dry season. Primary production rates (PP) positively correlated with salinity and euphoric depth, indicating that phytoplankton productivity was light-limited. On the other hand, bacterial biomass (BB) and production rates (BP) were 1.9- and 3.7-fold higher, respectively, during the rainy season, with mean values of up to 40.4 mu g Cl(-1) and 7.9 mu g Cl(-1) h-1, respectively. Despite such a high BP, bacterial abundance remained <2 x 106 cells ml(-1), indicating that bacterial production and removal were coupled. Mean specific growth rates ranged between 0.9 and 5.5 d(-1). BP was inversely correlated with salinity and positively correlated with temperature, organic matter, exopolymer particles, and particulate-attached bacteria; this last accounted for as much as 89.6% of the total abundance. During the rainy season, BP was generally much higher than PP, and values of BP/PP > 20 were registered during high freshwater input, suggesting that under these conditions, bacterial activity was predominantly supported by allochthonous inputs of organic carbon. In addition, BB probably represented the main pathway for the synthesis of high-quality (low C:N) biomass that may have been available to the heterotrophic components of the plankton food web, particularly nanoheterotrophs. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Four sediment cores were sampled from Lake Arari, located on Marajo Island at the mouth of the Amazon River. The island's vegetation cover is composed mainly of Amazon coastal forest, herbaceous and varzea vegetation. The integration of data on sedimentary structures, pollen, carbon and nitrogen isotope records, C/N ratios and radiocarbon ages allowed the identification of changes in vegetation and the sources of organic matter accumulated in the lake during the Holocene. The data indicate a relatively high flow energy, marine water influence and the presence of mangroves during the lagoon phase between 8990 and 8690 cal yr B.P. and 2310-2230 cal yr B.P. Between 2310 and 2230 cal yr B.P. and similar to 1000 cal yr B.P., the flow energy decreased and the mangroves were replaced by herbaceous vegetation following the decline in marine influence, likely due to the increase in freshwater river discharge. During the last 1000 years, Lake Arari was established in association with the expansion of herbaceous vegetation and the dominance of freshwater algae. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
Peatlands form in areas where net primary of organic matter production exceeds losses due to the decomposition, leaching or disturbance. Due to their chemical and physical characteristics, bogs can influence water dynamics because they can store large volumes of water in the rainy season and gradually release this water during the other months of the year. In Diamantina, Minas Gerais, Brazil, a peatland in the environmental protection area of Pau-de-Fruta ensures the water supply of 40,000 inhabitants. The hypothesis of this study is that the peat bogs in Pau-de-Fruta act as an environment for carbon storage and a regulator of water flow in the Corrego das Pedras basin. The objective of this study was to estimate the water volume and organic matter mass in this peatland and to study the influence of this environment on the water flow in the Corrego das Pedras basin. The peatland was mapped using 57 transects, at intervals of 100 m. Along all transects, the depth of the peat bog, the Universal Transverse Mercator (UTM) coordinates and altitude were recorded every 20 m and used to calculate the area and volume of the peatland. The water volume was estimated, using a method developed in this study, and the mass of organic matter based on samples from 106 profiles. The peatland covered 81.7 hectares (ha), and stored 497,767 m(3) of water, representing 83.7 % of the total volume of the peat bog. The total amount of organic matter (OM) was 45,148 t, corresponding to 552 t ha(-1) of OM. The peat bog occupies 11.9 % of the area covered by the Corrego das Pedras basin and stores 77.6 % of the annual water surplus, thus controlling the water flow in the basin and consequently regulating the water course.
Resumo:
Background and aims Eucalyptus plantations cover 20 million hectares on highly weathered soils. Large amounts of nitrogen (N) exported during harvesting lead to concerns about their sustainability. Our goal was to assess the potential of introducing A. mangium trees in highly productive Eucalyptus plantations to enhance soil organic matter stocks and N availability. Methods A randomized block design was set up in a Brazilian Ferralsol soil to assess the effects of mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and mixed plantations (50A:50E)on soil organic matter stocks and net N mineralization. Results A 6-year rotation of mono-specific A. mangium plantations led to carbon (C) and N stocks in the forest floor that were 44% lower and 86% higher than in pure E. grandis stands, respectively. Carbon and N stocks were not significantly different between the three treatments in the 0-15 cm soil layer. Field incubations conducted every 4 weeks for the two last years of the rotation estimated net soil N mineralization in 100A and 100E at 124 and 64 kg ha(-1) yr(-1), respectively. Nitrogen inputs to soil with litterfall were of the same order as net N mineralization. Conclusions Acacia mangium trees largely increased the turnover rate of N in the topsoil. Introducing A. mangium trees might improve mineral N availability in soils where commercial Eucalyptus plantations have been managed for a long time.
Resumo:
The sources and concentrations of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs), faecal and biogenic sterols, and trace metals at 10 sampling sites located in Laranjeiras Bay, a large Environmental Protection Area in the southern Atlantic region of Brazil, were determined to assess the sources of organic matter and the contamination status of estuarine sediments. Organic compounds were determined by GC-FID and GC-MS, and ICP-OES was used to evaluate trace metals. The total AHs concentration ranged from 0.28 to 8.19 mu g g(-1), and n-C-29 and n-C-31 alkanes were predominant, indicating significant inputs from higher terrestrial plants. Unresolved complex mixtures (UCM) were not detected at any site, suggesting that the study area was not significantly contaminated by fossil fuels. The total PAH concentration varied from 3.85 to 89.2 ng g(-1). The ratio between selected PAH isomers showed that combustion of biomass, coal, and petroleum is the rnain source of PAHs in the study area. The concentrations of the faecal sterols coprostanol and epicoprostanol were below the detection limits, suggesting that sewage was not a significant contributor to sedimentary organic matter. The concentrations of the trace metals (As, Cr, Cu, Ni, Pb and Zn) were low, except near sites located at the mouths of rivers that discharge into the study area and near urbanised regions (Paranagua city and the adjoining harbour). In general, the concentrations of PAHs were below the threshold effect concentrations (TEL) levels. Although the As, Cr and Ni concentrations were above the TEL levels, the study area can be considered as preserved from human activities.
Resumo:
This study evaluates the potential for using different effluents for simultaneous H-2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H-2 was produced from parboiled rice wastewater (23.9 mL g(-1) chemical oxygen demand [COD]) and vinasse (20.8 mL g(-1) COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g(-1) COD), followed by parboiled rice wastewater (115.5 mL g(-1) COD) and glycerol (180.1 mL g(-1) COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g(-1) COD). The total energy recovery from vinasse (10.4 kJ g(-1) COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g(-1) COD), parboiled rice wastewater (63.91 %, 4.92 kJ g(-1) COD), and sewage (51.11 %, 1.85 kJ g(-1) COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H-2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H-2 and CH4.
Resumo:
Peatlands form in areas where net primary of organic matter production exceeds losses due to the decomposition, leaching or disturbance. Due to their chemical and physical characteristics, bogs can influence water dynamics because they can store large volumes of water in the rainy season and gradually release this water during the other months of the year. In Diamantina, Minas Gerais, Brazil, a peatland in the environmental protection area of Pau-de-Fruta ensures the water supply of 40,000 inhabitants. The hypothesis of this study is that the peat bogs in Pau-de-Fruta act as an environment for carbon storage and a regulator of water flow in the Córrego das Pedras basin. The objective of this study was to estimate the water volume and organic matter mass in this peatland and to study the influence of this environment on the water flow in the Córrego das Pedras basin. The peatland was mapped using 57 transects, at intervals of 100 m. Along all transects, the depth of the peat bog, the Universal Transverse Mercator (UTM) coordinates and altitude were recorded every 20 m and used to calculate the area and volume of the peatland. The water volume was estimated, using a method developed in this study, and the mass of organic matter based on samples from 106 profiles. The peatland covered 81.7 hectares (ha), and stored 497,767 m³ of water, representing 83.7 % of the total volume of the peat bog. The total amount of organic matter (OM) was 45,148 t, corresponding to 552 t ha-1 of OM. The peat bog occupies 11.9 % of the area covered by the Córrego das Pedras basin and stores 77.6 % of the annual water surplus, thus controlling the water flow in the basin and consequently regulating the water course.
Resumo:
Summer bloom-derived phytodetritus settles rapidly to the seafloor on the West Antarctic Peninsula (WAP) continental shelf, where it appears to degrade relatively slowly, forming a sediment ""food bank"" for benthic detritivores. We used stable carbon and nitrogen isotopes to examine sources and sinks of particulate organic material (POM) reaching the WAP shelf benthos (550-625 m depths), and to explore trophic linkages among the most abundant benthic megafauna. We measured delta(13)C and delta(15)N values in major megafaunal taxa (n = 26) and potential food sources, including suspended and sinking POM, ice algae, sediment organic carbon, phytodetritus, and macrofaunal polychaetes. The range in delta(13)C values (> 14 parts per thousand) of suspended POM was considerably broader than in sedimentary POC, where little temporal variability in stable isotope signatures was observed. While benthic megafauna also exhibited a broad range of VC values, organic carbon entering the benthic food web appeared to be derived primarily from phytoplankton production, with little input from ice algae. One group of organisms, primarily deposit-feeders, appeared to rely on fresh phytodetritus recovered from the sediments, and sediment organic material that had been reworked by sediment microbes. A second group of animals, including many mobile invertebrate and fish predators, appeared to utilize epibenthic or pelagic food resources such as zooplankton. One surface-deposit-feeding holothurian (Protelpidia murrayi) exhibited seasonal variability in stable isotope values of body tissue, while other surface- and subsurface-deposit-feeders showed no evidence of seasonal variability in food source or trophic position. Detritus from phytoplankton blooms appears to be the primary source of organic material for the detritivorous benthos; however, seasonal variability in the supply of this material is not mirrored in the sediments, and only to a minor degree in the benthic fauna. This pattern suggests substantial inertia in benthic-pelagic coupling, whereby the sediment ecosystem integrates long-term variability in production processes in the water column above. Published by Elsevier Ltd.
Resumo:
The Amazonian lowlands include large patches of open vegetation which contrast sharply with the rainforest, and the origin of these patches has been debated. This study focuses on a large area of open vegetation in northern Brazil, where d13C and, in some instances, C/N analyses of the organic matter preserved in late Quaternary sediments were used to achieve floristic reconstructions over time. The main goal was to determine when the modern open vegetation started to develop in this area. The variability in d13C data derived from nine cores ranges from -32.2 to -19.6 parts per thousand, but with nearly 60% of data above -26.5 parts per thousand. The most enriched values were detected only in ecotone and open vegetated areas. The development of open vegetation communities was asynchronous, varying between estimated ages of 6400 and 3000 cal a BP. This suggests that the origin of the studied patches of open vegetation might be linked to sedimentary dynamics of a late Quaternary megafan system. As sedimentation ended, this vegetation type became established over the megafan surface. In addition, the data presented here show that the presence of C4 plants must be used carefully as a proxy to interpret dry paleoclimatic episodes in Amazonian areas. Copyright (c) 2012 John Wiley & Sons, Ltd.