2 resultados para delivery chain

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to entrap drugs within vehicles and subsequently release them has led to new treatments for a number of diseases. Based on an associative phase separation and interfacial diffusion approach, we developed a way to prepare DNA gel particles without adding any kind of cross-linker or organic solvent. Among the various agents studied, cationic surfactants offered particularly efficient control for encapsulation and DNA release from these DNA gel particles. The driving force for this strong association is the electrostatic interaction between the two components, as induced by the entropic increase due to the release of the respective counter-ions. However, little is known about the influence of the respective counter-ions on this surfactant-DNA interaction. Here we examined the effect of different counter-ions on the formation and properties of the DNA gel particles by mixing DNA (either single-(ssDNA) or double-stranded (dsDNA)) with the single chain surfactant dodecyltrimethylammonium (DTA). In particular, we used as counter-ions of this surfactant the hydrogen sulfate and trifluoromethane sulfonate anions and the two halides, chloride and bromide. Effects on the morphology of the particles obtained, the encapsulation of DNA and its release, as well as the haemocompatibility of these particles are presented, using counter-ion structure and DNA conformation as controlling parameters. Analysis of the data indicates that the degree of counter-ion dissociation from the surfactant micelles and the polar/hydrophobic character of the counter-ion are important parameters in the final properties of the particles. The stronger interaction with amphiphiles for ssDNA than for dsDNA suggests the important role of hydrophobic interactions in DNA.