3 resultados para cylindrically bounded submanifolds

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study isoparametric submanifolds of rank at least two in a separable Hilbert space, which are known to be homogeneous by the main result in [E. Heintze and X. Liu, Ann. of Math. (2), 149 (1999), 149-181], and with such a submanifold M and a point x in M we associate a canonical homogeneous structure I" (x) (a certain bilinear map defined on a subspace of T (x) M x T (x) M). We prove that I" (x) , together with the second fundamental form alpha (x) , encodes all the information about M, and we deduce from this the rigidity result that M is completely determined by alpha (x) and (Delta alpha) (x) , thereby making such submanifolds accessible to classification. As an essential step, we show that the one-parameter groups of isometries constructed in [E. Heintze and X. Liu, Ann. of Math. (2), 149 (1999), 149-181] to prove their homogeneity induce smooth and hence everywhere defined Killing fields, implying the continuity of I" (this result also seems to close a gap in [U. Christ, J. Differential Geom., 62 (2002), 1-15]). Here an important tool is the introduction of affine root systems of isoparametric submanifolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports experiments on the use of a recently introduced advection bounded upwinding scheme, namely TOPUS (Computers & Fluids 57 (2012) 208-224), for flows of practical interest. The numerical results are compared against analytical, numerical and experimental data and show good agreement with them. It is concluded that the TOPUS scheme is a competent, powerful and generic scheme for complex flow phenomena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic approach to model nonlinear systems using norm-bounded linear differential inclusions (NLDIs) is proposed in this paper. The resulting NLDI model is suitable for the application of linear control design techniques and, therefore, it is possible to fulfill certain specifications for the underlying nonlinear system, within an operating region of interest in the state-space, using a linear controller designed for this NLDI model. Hence, a procedure to design a dynamic output feedback controller for the NLDI model is also proposed in this paper. One of the main contributions of the proposed modeling and control approach is the use of the mean-value theorem to represent the nonlinear system by a linear parameter-varying model, which is then mapped into a polytopic linear differential inclusion (PLDI) within the region of interest. To avoid the combinatorial problem that is inherent of polytopic models for medium- and large-sized systems, the PLDI is transformed into an NLDI, and the whole process is carried out ensuring that all trajectories of the underlying nonlinear system are also trajectories of the resulting NLDI within the operating region of interest. Furthermore, it is also possible to choose a particular structure for the NLDI parameters to reduce the conservatism in the representation of the nonlinear system by the NLDI model, and this feature is also one important contribution of this paper. Once the NLDI representation of the nonlinear system is obtained, the paper proposes the application of a linear control design method to this representation. The design is based on quadratic Lyapunov functions and formulated as search problem over a set of bilinear matrix inequalities (BMIs), which is solved using a two-step separation procedure that maps the BMIs into a set of corresponding linear matrix inequalities. Two numerical examples are given to demonstrate the effectiveness of the proposed approach.