5 resultados para crash avoidance, path planning, spatial modeling, object tracking

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An association between memory and executive dysfunction (ED) has been demonstrated in patients with mixed neurological disorders. We aimed to investigate the impact of ED in memory tasks of children with temporal lobe epilepsy (TLE). We evaluated 36 children with TLE and 28 controls with tests for memory, learning, attention, mental flexibility, and mental tracking. Data analysis was composed of comparison between patients and controls in memory and executive function; correlation between memory and executive function tests; and comparison between patients with mild and severe ED in memory tests. Children with TLE had worse performance in focused attention, immediate and delayed recall, phonological memory, mental tracking, planning, and abstraction. Planning, abstraction, and mental tracking were correlated with visual and verbal memory. Children with severe ED had worse performance in verbal and visual memory and learning tests. This study showed that ED was related to memory performance in children with TLE. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The analysis of spatial relations among objects in an image is an important vision problem that involves both shape analysis and structural pattern recognition. In this paper, we propose a new approach to characterize the spatial relation along, an important feature of spatial configurations in space that has been overlooked in the literature up to now. We propose a mathematical definition of the degree to which an object A is along an object B, based on the region between A and B and a degree of elongatedness of this region. In order to better fit the perceptual meaning of the relation, distance information is included as well. In order to cover a more wide range of potential applications, both the crisp and fuzzy cases are considered. In the crisp case, the objects are represented in terms of 2D regions or ID contours, and the definition of the alongness between them is derived from a visibility notion and from the region between the objects. However, the computational complexity of this approach leads us to the proposition of a new model to calculate the between region using the convex hull of the contours. On the fuzzy side, the region-based approach is extended. Experimental results obtained using synthetic shapes and brain structures in medical imaging corroborate the proposed model and the derived measures of alongness, thus showing that they agree with the common sense. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this work was to evaluate extreme water table depths in a watershed, using methods for geographical spatial data analysis. Groundwater spatio-temporal dynamics was evaluated in an outcrop of the Guarani Aquifer System. Water table depths were estimated from monitoring of water levels in 23 piezometers and time series modeling available from April 2004 to April 2011. For generation of spatial scenarios, geostatistical techniques were used, which incorporated into the prediction ancillary information related to the geomorphological patterns of the watershed, using a digital elevation model. This procedure improved estimates, due to the high correlation between water levels and elevation, and aggregated physical sense to predictions. The scenarios showed differences regarding the extreme levels - too deep or too shallow ones - and can subsidize water planning, efficient water use, and sustainable water management in the watershed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.