9 resultados para corticotropin releasing factor

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that endocannabinoids play an important role in the regulation of food intake and body weight. Endocannabinoids and cannabinoid receptors are found in the hypothalamus and brainstem, which are central areas involved in the control of food intake and energy expenditure. Activation of these areas is related to hypophagia observed during inflammatory stimulus. This study investigated the effects of cannabinoid (CB1) receptor blockade on lipopolysaccharide (LPS)-induced hypophagia. Male Wistar rats were pretreated with rimonabant (10 mg/kg, by gavage) or vehicle; 30 min later they received an injection of either LPS (100 mu g/kg, intraperitoneal) or saline. Food intake, body weight, corticosterone response, CRF and CART mRNA expression, Fos-CRF and Fos-alpha-MSH immunoreactivity in the hypothalamus and Fos-tyrosine hydroxylase (TH) immunoreactivity in the brainstem were evaluated. LPS administration decreased food intake and body weight gain and increased plasma corticosterone levels and CRF mRNA expression in the PVN. We also observed an increase in Fos-CRF and Fos-TH double-labeled neurons after LPS injection in vehicle-pretreated rats, with no changes in CART mRNA or Fos-alpha-MSH immunoreactive neurons in the ARC. In saline-treated animals, rimonabant pretreatment decreased food intake and body weight gain but did not modify hormone response or Fos expression in the hypothalamus and brainstem compared with vehicle-pretreated rats. Rimonabant pretreatment potentiated LPS-induced hypophagia, body weight loss and Fos-CRF and Fos-TH expressing neurons. Rimonabant did not modify corticosterone, CRF mRNA or Fos-alpha-MSH responses in rats treated with LPS. These data suggest that the endocannabinoid system, mediated by CB1 receptors, modulates hypothalamic and brainstem circuitry underlying the hypophagic effect during endotoxemia to prevent an exaggerated food intake decrease. This article is part of a Special Issue entitled 'Central Control of Food Intake'. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The studies reviewed in this article certainly do not constitute the entire body of research conducted by Wylie Vale's group and his collaborators, they might constitute turning points in CRF research. In addition, the studies reviewed here show that, over the course of 31 years (from 1981 to 2012), Wylie tirelessly pursued the answers to fundamental questions regarding CRF. He was a man whose drive never seemed to falter

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CRH has been implicated as a mediator of stress-induced effects on the hypothalamus-pituitary-gonad axis, acting via CRH receptors in various brain regions. We investigated whether the effects of restraint stress on the secretion of gonadotropins on the morning of proestrus are mediated by the CRH-R1 or CRH-R2 receptors in the oval subdivision of the anterolateral BST, the central amygdala, the locus coeruleus (LC), or the A1 and A2 neuron groups in the medulla. At proestrus morning, rats were injected with antalarmin (a CRH-R1 antagonist), asstressin2-B (a CRH-R2 antagonist) or vehicles. Thirty minutes after the injection, the animals were placed into restraints for 30 min, and blood was sampled for 2 h. At the end of the experiment, the brains were removed for immunofluorescence analyses. Restraint stress increased the levels of FSH and LH. Antalarmin blocked the stress-induced increases in FSH and LH secretion, but astressin2-B only blocked the increase in FSH secretion. LC showed intense stress-induced neuronal activity. FOS/tyrosine-hydroxylase coexpression in LC was reduced by antalarmin, but not astressin2-B. The CRH-R1 receptor, more than CRH-R2 receptor, appears to be essential for the stimulation of the hypothalamus-pituitary-gonad axis by acute stress; this response is likely mediated in part by noradrenergic neurons in the LC. We postulate that the stress-induced facilitation of reproductive function is mediated, at least in part, by CRH action through CRH-R1 on noradrenaline neurons residing in the LC that trigger GnRH discharge and gonadotropin secretion. (Endocrinology 153: 4838-4848, 2012)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deactivation of the inhibitory mechanisms with injections of moxonidine (alpha(2)-adrenoceptor/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases hypertonic NaCl intake by intra- or extracellular dehydrated rats. In the present study, we investigated the changes in the urinary sodium and volume, sodium balance, and plasma vasopressin and oxytocin in rats treated with intragastric (i.g.) 2 M NaCl load (2 ml/rat) combined with injections of moxonidine into the LPBN. Male Holtzman rats (n=5-12/group) with stainless steel cannulas implanted bilaterally into LPBN were used. Bilateral injections of moxonidine (0.5 nmol/0.2 mu l) into the LPBN decreased i.g. 2 M NaCIinduced diuresis (4.6 +/- 0.7 vs. vehicle: 7.4 +/- 0.6 ml/120 min) and natriuresis (1.65 +/- 0.29 vs. vehicle: 2.53 +/- 0.17 mEq/120 min), whereas the previous injection of the alpha(2)-adrenoceptor antagonist RX 821002 (10 nmol/0.2 mu l) into the LPBN abolished the effects of moxonidline. Moxonidine injected into the LPBN reduced i.g. 2 M NaCl-induced increase in plasma oxytocin and vasopressin (14.6 +/- 2.8 and 2.2 +/- 0.3 vs. vehicle: 25.7 +/- 7 and 4.3 +/- 0.7 pg/ml, respectively). Moxonidine injected into the LPBN combined with i.g. 2 M NaCl also increased 0.3 M NaCl intake (7.5 +/- 1.7 vs. vehicle: 0.5 +/- 0.2 mEq/2 h) and produced positive sodium balance (2.3 +/- 1.4 vs. vehicle: -1.2 +/- 0.4 mEq/2 h) in rats that had access to water and NaCl. The present results show that LPBN alpha(2)-adrenoceptor activation reduces renal and hormonal responses to intracellular dehydration and increases sodium and water intake, which facilitates sodium retention and body fluid volume expansion. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanisms involved in stress-induced asthmatic alterations have been poorly characterised. We assessed whether inducible nitric oxide synthase (iNOS) inhibition modulates the stress-amplified lung parenchyma responsiveness, oxidative stress and extracellular matrix remodelling that was previously increased by chronic lung inflammation. Guinea pigs were subjected to 7 exposures to ovalbumin (1-5 mg/ml) or saline (OVA and SAL groups) over 4 weeks. To induce behavioural stress, animals were subjected to a forced swimming protocol (5 times/week, over 2 weeks; SAL-Stress and OVA-Stress groups) 24 h after the 4th inhalation. 1400W (iNOS-specific inhibitor) was administered intraperitoneally in the last 4 days of the protocol (SAL-1400W, OVA-1400W, SAL-Stress+1400W and OVA-Stress+1400W groups). Seventy-two hours after the last inhalation, animals were anaesthetised and exsanguinated, and adrenal glands were removed. Lung tissue resistance and elastance were evaluated by oscillatory mechanics and submitted for histopathological evaluation. Stressed animals had higher adrenal weights compared to non-stressed groups, which were reduced by 1400W treatment. Behavioural stress in sensitised animals amplified the resistance and elastance responses after antigen challenge, numbers of eosinophils and iNOS+ cells, actin content and 8-iso-PGF2 alpha density in the distal lung compared to the OVA group. 1400W treatment in ovalbumin-exposed and stressed animals reduced lung mechanics, iNOS+ cell numbers and 8-iso-PGF2a density compared to sensitised and stressed animals that received vehicle treatment. We concluded that stress amplifies the distal lung constriction, eosinophilic inflammation, iNOS expression, actin content and oxidative stress previously induced by chronic lung inflammation. iNOS-derived NO contributes to stress-augmented lung tissue functional alterations in this animal model and is at least partially due to activation of the oxidative stress pathway. copyright (C) 2012S. Karger AG, Basel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Studies in men are not consistent regarding the effects of thyroid hormone on the production of gonadotropins. In hypothyroidism consequent to diverse causes, an increase or no change in serum luteinizing hormone (LH) have been reported. The attempt to explain the mechanisms involved in this pathology using rats as an experimental model also seems to repeat this divergence, since hypothyroidism has been shown to induce hypogonadotropic hypogonadism, a hypergonadotropic state, or not to affect the basal levels of LH. Notably, the promoter region of the gene encoding the Lh beta subunit and GnRH (gonadotropin-releasing factor) does not contain a thyroid responsive element. Therefore, we investigated the hypothesis that, in male rats, posttranscriptional mechanisms of LH synthesis are altered in hypothyroidism. We also attempted to determine if hypothyroidism directly affects testicular function in male rats. METHODS: Male Wistar rats, 60 days old, were thyroidectomized or sham-operated. After 20 days, they were decapitated, and the pituitaries were collected and analyzed for Lh mRNA, LH content, poly(A) tail length, and polysome profile. The testes were collected and analyzed for Lh receptor mRNA, LH receptor content, and histology using morphometric analyses. The testis, epididymis, seminal vesicle, and ventral prostate were weighed, and serum concentrations of LH, testosterone, thyrotropin (TSH), and triiodothyronine (T3) were measured. RESULTS: Hypothyroidism was associated, in the pituitary, with an increase in Lh mRNA expression, a reduction in Lh mRNA poly(A) tail length, a reduction in the number of LH transcripts associated with polysomes. Pituitary LH was decreased but serum LH was increased from 102 to 543 pg/mL. Despite this, serum testosterone concentrations were decreased from 1.8 to 0.25 ng/mL. A decreased germinative epithelium height of the testes and a reduced weight of androgen-responsive tissues were observed (ventral prostrate: 74 vs. 23 mg/100 g body weight [BW]; seminal vesicle undrained: 280 vs. 70 mg/100 g BW; and seminal vesicle drained: 190 vs. 60 mg/100 g BW). CONCLUSIONS: Hypothyroidism in adult male rats has dual effects on the pituitary testicular axis. It alters posttranscriptional mechanisms of LH synthesis and probably has a direct effect on testicular function. However, these data suggest the possibility that reduced LH bioactivity may account in part for impaired testicular function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In sepsis, toll-like receptor (TLR)-4 modulates the migration of neutrophils to infectious foci, favoring bacteremia and mortality. In experimental sepsis, organ dysfunction and cytokines released by activated macrophages can be reduced by gastrin-releasing peptide (GRP) receptor (GRPR) antagonist RC-3095. Here we report a link between GRPR and TLR-4 in experimental models and in sepsis patients. RAW 264.7 culture cells were exposed to lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-alpha and RC-3095 (10 ng/mL), Male Wistar rats were subjected to cecal ligation and puncture (CLP), and RC-3095 was administered (3 mg/kg, subcutaneously); after 6 h, we removed the blood, bronchoalveolar lavage, peritoneal lavage and lung. Human patients with a clinical diagnosis of sepsis received a continuous infusion with RC-3095 (3 mg/kg, intravenous) over a period of 12 h, and plasma was collected before and after RC-3095 administration and, in a different set of patients with systemic inflammatory response syndrome (SIRS) or sepsis. GRP plasma levels were determined. RC-3095 inhibited TLR-4, extracellular-signal-related kinase (ERK)-1/2, Jun NH2-terminal kinase (JNK) and Akt and decreased activation of activator protein 1 (AP-1), nuclear factor (NF)-kappa B and interleukin (IL)-6 in macrophages stimulated by LPS. It also decreased IL-6 release from macrophages stimulated by TNF-alpha. RC-3095 treatment in CLP rats decreased lung TLR-4, reduced the migration of cells to the lung and reduced systemic cytokines and bacterial dissemination. Patients with sepsis and systemic inflammatory response syndrome have elevated plasma levels of GRP which associates with clinical outcome in the sepsis patients. These findings highlight the role of GRPR signaling in sepsis outcome and the beneficial action of GRPR antagonists in controlling the inflammatory response in sepsis through a mechanism involving at least inhibition of TLR-4 signaling. Online address: http://www.molmed.org doi: 10.2119/molmed.2012.00083

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The puerperium is the period of highest risk for thrombosis during a woman's reproductive life and it is an important time for initiating an effective contraceptive method in order to increase intergestational interval. Thus, the objective of the present study was to evaluated the effects of the etonogestrel (ENG)-releasing contraceptive implant inserted immediately postpartum on maternal hemostasis markers during the first six weeks of delivery. Materials and Methods: Forty healthy women aged 18 to 35 years-old were randomized to receive either the ENG-releasing implant 24-48 h after delivery (implant group; n=20) or nothing (control group) until the sixth postpartum week. Blood samples were collected at 24-48 h and at 6 weeks after delivery, and hemostatic variables, including fibrinogen, coagulation factors, protein C, free protein S, antithrombin, alpha 2-antiplasmin, plasminogen activator inhibitor 1, thrombin-antithrombin complex (TAT), prothrombin fragment (PF)1+2, and D-dimers, as well as normalized activated protein C sensitivity ratio (nAPCsr), thrombin time, activated partial thromboplastin time, and prothrombin time were evaluated. Results: Insertion of the ENG-releasing contraceptive implant did not change the physiological reduction in overall coagulation (TAT and PF1+2) and fibrinolysis (D-dimer) markers, or nAPCsr. Reductions in factors II, VII, X and fibrinogen and increases in factor V were greater in the control than in the implant group. Clotting factors remained within normal limits throughout the study. Conclusion: The ENG-releasing contraceptive implant inserted immediately postpartum did not have negative effects on physiological variations of the hemostatic system during the first 6 weeks postpartum. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective Growth hormone (GH)/insulin-like growth factor (IGF) axis and insulin are key determinants of bone remodelling. Homozygous mutations in the GH-releasing hormone receptor (GHRHR) gene (GHRHR) are a frequent cause of genetic isolated GH deficiency (IGHD). Heterozygosity for GHRHR mutation causes changes in body composition and possibly an increase in insulin sensitivity, but its effects on bone quality are still unknown. The objective of this study was to assess the bone quality and metabolism and its correlation with insulin sensitivity in subjects heterozygous for a null mutation in the GHRHR. Patients and methods A cross-sectional study was performed on 76 normal subjects (68.4% females) (N/N) and 64 individuals (64.1% females) heterozygous for a mutation in the GHRHR (MUT/N). Anthropometric features, quantitative ultrasound (QUS) of the heel, bone markers [osteocalcin (OC) and CrossLaps], IGF-I, glucose and insulin were measured, and homeostasis model assessment of insulin resistance (HOMAIR) was calculated. Results There were no differences in age or height between the two groups, but weight (P = 0.007) and BMI (P = 0.001) were lower in MUT/N. There were no differences in serum levels of IGF-I, glucose, T-score or absolute values of stiffness and OC, but insulin (P = 0.01), HOMAIR (P = 0.01) and CrossLaps (P = 0.01) were lower in MUT/N. There was no correlation between OC and glucose, OC and HOMAIR in the 140 individuals as a whole or in the separate MUT/N or N/N groups. Conclusions This study suggests that one allele mutation in the GHRHR gene has a greater impact on energy metabolism than on bone quality.