6 resultados para coronary flow
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: There is a growing need to improve myocardial protection, which will lead to better performance of cardiac operations and reduce morbidity and mortality. Therefore, the objective of this study was to compare the efficacy of myocardial protection solution using both intracellular and extracellular crystalloid type regarding the performance of the electrical conduction system, left ventricular contractility and edema, after being subjected to ischemic arrest and reperfusion. Methods: Hearts isolated from male Wistar (n=32) rats were prepared using Langendorff method and randomly divided equally into four groups according the cardioprotective solutions used Krebs-Henseleit-Buffer (KHB), Bretschneider-HTK (HTK), St. Thomas-1 (STH-1) and Celsior (CEL). After stabilization with KHB at 37 degrees C, baseline values (control) were collected for heart rate (HR), left ventricle systolic pressure (LVSP), maximum first derivate of rise left ventricular pressure (+dP/dt), maximum first derivate of fall left ventricular pressure (-dP/dt) and coronary flow (CF). The hearts were then perfused at 10 degrees C for 5 min and kept for 2 h in static ischemia at 20 degrees C in each cardioprotective solution. Data evaluation was done using analysis of variance in completely randomized One-Way ANOVA and Tukey's test for multiple comparisons. The level of statistical significance chosen was P<0.05. Results: HR was restored with all the solutions used. The evaluation of left ventricular contractility (LVSP, +dP/dt and -dP/dt) showed that treatment with CEL solution was better compared to other solutions. When analyzing the CF, the HTK solution showed better protection against edema. Conclusion: Despite the cardioprotective crystalloid solutions studied are not fully able to suppress the deleterious effects of ischemia and reperfusion in the rat heart, the CEL solution had significantly higher results followed by HTK>KHB>STH-1.
Resumo:
Background. There is a growing need to improve heart preservation benefit the performance of cardiac operations, decrease morbidity, and more important, increase the donor pool. Therefore, the objective of this study was to evaluate the cardioprotective effects of Krebs-Henseleit buffer (KHB), Bretschneider-HTK (HTK), St. Thomas No. 1 (STH-1), and Celsior (CEL) solutions infused at 10 degrees C and 20 degrees C. Methods. Hearts isolated from male albino Wistar rats and prepared according to Langendorff were randomly divided equally into 8 groups according to the temperature of infusion (10 degrees C or 20 degrees C) and cardioprotective solutions (KHB, HTK, STH-1, and CEL). After stabilization with KHB at 37 degrees C, baseline values were collected (control) for heart rate (HR), left ventricle systolic pressure (LVSP), coronary flow (CF), maximum rate of rise of left ventricular pressure during ventricular contraction (+dP/dt) and maximum rate of fall of left ventricular pressure during left ventricular relaxation (-dP/dt). The hearts were then perfused with cardioprotective solutions for 5 minutes and kept for 2 hours in static ischemia at 20 degrees C. Data evaluation used analysis of variance (ANOVA) in all together randomized 2-way ANOVA and Tukey's test for multiple comparisons. The level of significance chosen was P < .05. Results. We observed that all 4 solutions were able to recover HR, independent of temperature. Interestingly, STH-1 solution at 20 degrees C showed HR above baseline throughout the experiment. An evaluation of the corresponding hemodynamic values (LVSP, +dP/dt, and -dP/dt) indicated that treatment with CEL solution was superior at both temperatures compared with the other solutions, and had better performance at 20 degrees C. When analyzing performance on CF maintenance, we observed that it was temperature dependent. However, when applying both HTK and CEL, at 10 degrees C and 20 degrees C respectively, indicated better protection against development of tissue edema. Multiple comparisons between treatments and hemodynamic variable outcomes showed that using CEL solution resulted in significant improvement compared with the other solutions at both temperatures. Conclusion. The solutions investigated were not able to fully suppress the deleterious effects of ischemia and reperfusion of the heart. However, these results allow us to conclude that temperature and the cardioprotective solution are interdependent as far as myocardial protection. Although CEL solution is the best for in myocardial protection, more studies are needed to understand the interaction between temperature and perfusion solution used. This will lead to development of better and more efficient cardioprotective methods.
Resumo:
Abstract Background Myocardial contrast echocardiography has been used for determination of infarct size (IS) in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE). Methods Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin) was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC) staining. Results IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004), with good correlation between measurements (r = 0.91; p < 0.01). The necrotic area determined by TTC was 2.29 ± 1.36 cm2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p < 0.001) then before it (r = 0.92; p = 0.0013). Conclusion RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.
Resumo:
Abstract Background In patients with advanced non-ischemic cardiomyopathy (NIC), right-sided cardiac disturbances has prognostic implications. Right coronary artery (RCA) flow pattern and flow reserve (CFR) are not well known in this setting. The purpose of this study was to assess, in human advanced NIC, the RCA phasic flow pattern and CFR, also under right-sided cardiac disturbances, and compare with left coronary circulation. As well as to investigate any correlation between the cardiac structural, mechanical and hemodynamic parameters with RCA phasic flow pattern or CFR. Methods Twenty four patients with dilated severe NIC were evaluated non-invasively, even by echocardiography, and also by cardiac catheterization, inclusive with Swan-Ganz catheter. Intracoronary Doppler (Flowire) data was obtained in RCA and left anterior descendent coronary artery (LAD) before and after adenosine. Resting RCA phasic pattern (diastolic/systolic) was compared between subgroups with and without pulmonary hypertension, and with and without right ventricular (RV) dysfunction; and also with LAD. RCA-CFR was compared with LAD, as well as in those subgroups. Pearson's correlation analysis was accomplished among echocardiographic (including LV fractional shortening, mass index, end systolic wall stress) more hemodynamic parameters with RCA phasic flow pattern or RCA-CFR. Results LV fractional shortening and end diastolic diameter were 15.3 ± 3.5 % and 69.4 ± 12.2 mm. Resting RCA phasic pattern had no difference comparing subgroups with vs. without pulmonary hypertension (1.45 vs. 1.29, p = NS) either with vs. without RV dysfunction (1.47 vs. 1.23, p = NS); RCA vs. LAD was 1.35 vs. 2.85 (p < 0.001). It had no significant correlation among any cardiac mechanical or hemodynamic parameter with RCA-CFR or RCA flow pattern. RCA-CFR had no difference compared with LAD (3.38 vs. 3.34, p = NS), as well as in pulmonary hypertension (3.09 vs. 3.10, p = NS) either in RV dysfunction (3.06 vs. 3.22, p = NS) subgroups. Conclusion In patients with chronic advanced NIC, RCA phasic flow pattern has a mild diastolic predominance, less marked than in LAD, with no effects from pulmonary artery hypertension or RV dysfunction. There is no significant correlation between any cardiac mechanical-structural or hemodynamic parameter with RCA-CFR or RCA phasic flow pattern. RCA flow reserve is still similar to LAD, independently of those right-sided cardiac disturbances.
Resumo:
Semi-quantitative stenosis assessment by coronary CT angiography only modestly predicts stress-induced myocardial perfusion abnormalities. The performance of quantitative CT angiography (QCTA) for identifying patients with myocardial perfusion defects remains unclear. CorE-64 is a multicenter, international study to assess the accuracy of 64-slice QCTA for detecting a parts per thousand yen50% coronary arterial stenoses by quantitative coronary angiography (QCA). Patients referred for cardiac catheterization with suspected or known coronary artery disease were enrolled. Area under the receiver-operating-characteristic curve (AUC) was used to evaluate the diagnostic accuracy of the most severe coronary artery stenosis in a subset of 63 patients assessed by QCTA and QCA for detecting myocardial perfusion abnormalities on exercise or pharmacologic stress SPECT. Diagnostic accuracy of QCTA for identifying patients with myocardial perfusion abnormalities by SPECT revealed an AUC of 0.71, compared to 0.72 by QCA (P = .75). AUC did not improve after excluding studies with fixed myocardial perfusion abnormalities and total coronary arterial occlusions. Optimal stenosis threshold for QCTA was 43% yielding a sensitivity of 0.81 and specificity of 0.50, respectively, compared to 0.75 and 0.69 by QCA at a threshold of 59%. Sensitivity and specificity of QCTA to identify patients with both obstructive lesions and myocardial perfusion defects were 0.94 and 0.77, respectively. Coronary artery stenosis assessment by QCTA or QCA only modestly predicts the presence and the absence of myocardial perfusion abnormalities by SPECT. Confounding variables affecting the relationship between coronary anatomy and myocardial perfusion likely account for some of the observed discrepancies between coronary angiography and SPECT results.
Resumo:
Abstract Background The PEEP-ZEEP technique is previously described as a lung inflation through a positive pressure enhancement at the end of expiration (PEEP), followed by rapid lung deflation with an abrupt reduction in the PEEP to 0 cmH2O (ZEEP), associated to a manual bilateral thoracic compression. Aim To analyze PEEP-ZEEP technique's repercussions on the cardio-respiratory system in immediate postoperative artery graft bypass patients. Methods 15 patients submitted to a coronary artery bypass graft surgery (CABG) were enrolled prospectively, before, 10 minutes and 30 minutes after the technique. Patients were curarized, intubated, and mechanically ventilated. To perform PEEP-ZEEP technique, saline solution was instilled into their orotracheal tube than the patient was reconnected to the ventilator. Afterwards, the PEEP was increased to 15 cmH2O throughout 5 ventilatory cycles and than the PEEP was rapidly reduced to 0 cmH2O along with manual bilateral thoracic compression. At the end of the procedure, tracheal suction was accomplished. Results The inspiratory peak and plateau pressures increased during the procedure (p < 0.001) compared with other pressures during the assessment periods; however, they were within lung safe limits. The expiratory flow before the procedure were 33 ± 7.87 L/min, increasing significantly during the procedure to 60 ± 6.54 L/min (p < 0.001), diminishing to 35 ± 8.17 L/min at 10 minutes and to 36 ± 8.48 L/min at 30 minutes. Hemodynamic and oxygenation variables were not altered. Conclusion The PEEP-ZEEP technique seems to be safe, without alterations on hemodynamic variables, produces elevated expiratory flow and seems to be an alternative technique for the removal of bronchial secretions in patients submitted to a CABG.