5 resultados para coprecipitation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barium praseodymium tungstate (Ba1-xPr2x/3)WO4 crystals with (x = 0, 0.01, and 0.02) were prepared by the coprecipitation method. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopies. The shape and size of these crystals were observed by field emission scanning electron microcopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. Moreover, we have studied the photocatalytic (PC) activity of crystals for degradation of rhodamine B (RhB) dye. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all crystals exhibit a tetragonal structure without deleterious phases. FT-Raman spectra exhibited 13 Raman-active modes in a range from 50 to 1000 cm(-1), while FT-IR spectra have 8 infrared active modes in a range from 200 to 1050 cm(-1). FE-SEM images showed different shapes (bonbon-, spindle-, rice-and flake-like) as well as a reduction in the crystal size with an increase in Pr3+ ions. A possible growth process was proposed for these crystals. UV-vis absorption measurements revealed a decrease in optical band gap values with an increase of Pr3+ into the matrix. An intense green PL emission was noted for (Ba1-xPr2x/3)WO4 crystals (x = 0), while crystals with (x = 0.01 and 0.02) produced a reduction in the wide band PL emission and the narrow band PL emission which is related to f-f transitions from Pr3+ ions. High photocatalytic efficiency was verified for the bonbon-like BaWO4 crystals as a catalyst in the degradation of the RhB dye after 25 min under UV-light. Finally, we discuss possible mechanisms for PL and PC properties of these crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on the advancement of magnetic ionic liquids (MILs) as stable dispersions of surface-modified gamma-Fe2O3, Fe3O4, and CoFe2O4 magnetic nanoparticles (MNPs) in a hydrophobic ionic liquid, 1-n-butyl 3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). The MNPs were obtained via coprecipitation and were characterized using powder X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy, and magnetic measurements. The surface-modified MNPs (SM-MNPs) were obtained via the silanization of the MNPs with the aid of 1-butyl-3[3-(trimethoxysilyl)propyl]imidazolium chloride (BMSPI.Cl). The SM-MNPs were characterized by Raman spectroscopy and Fourier trail: form infrared attenuated total reflectance (FTIR-ATR) spectroscopy and by magnetic measurements. The FTIR-ATR spectra of the SM-MNPs exhibited characteristic absorptions of the imidazolium and those of the Fe-O-Si-C moieties, confirming the presence of BMSPI.Cl on the MNP surface. Thermogravimetric analysis (TGA) showed that the SM-MNPs were modified by at least one BMSPI.Cl monolayer. The MILs were characterized using Raman spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The Raman and DSC results indicated an interaction between the SM-MNPs and the IL. This interaction promotes the formation of a supramolecular structure close to the MNP surface that mimics the IL structure and is responsible for the stability of the MIL. Magnetic measurements of the MILs indicated no hysteresis. Superparamagnetic behavior and a saturation magnetization of similar to 22 emu/g could be inferred from the magnetic measurements of a sample containing 50% w/w gamma-Fe2O3 SM-MNP/BMI-NTf2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report our initial research to obtain hexagonal rod-like elongated silver tungstate (alpha-Ag2WO4) microcrystals by different methods [sonochemistry (SC), coprecipitation (CP), and conventional hydrothermal (CH)] and to study their cluster coordination and optical properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier transform infrared (FT-IR), X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopies. The shape and average size of these alpha-Ag2WO4 microcrystals were observed by field-emission scanning electron microscopy (FE-SEM). The optical properties of these microcrystals were investigated by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) measurements. XRD patterns and Rietveld refinement data confirmed that alpha-Ag2WO4 microcrystals have an orthorhombic structure. FT-IR spectra exhibited four IR-active modes in a range from 250 to 1000 cm(-1). XANES spectra at the W L-3-edge showed distorted octahedral [WO6] clusters in the lattice, while EXAFS analyses confirmed that W atoms are coordinated by six O atoms. FE-SEM images suggest that the alpha-Ag2WO4 microcrystals grow by aggregation and the Ostwald ripening process. PL properties of alpha-Ag2WO4 microcrystals decrease with an increase in the optical band-gap values (3.19-3.23 eV). Finally, we observed that large hexagonal rod-like alpha-Ag2WO4 microcrystals prepared by the SC method exhibited a major PL emission intensity relative to alpha-Ag2WO4 microcrystals prepared by the CP and CH methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sorption of aspartic and glutamic aminoacids by regeneration of calcined hydrotalcite is reported. Hydrotalcite was synthesized by coprecipitation and calcined at 773 K. Sorption experiments were performed at 298 K and 310 K, and the results reveal that at low aminoacids equilibrium concentrations, intercalation of hydroxyl anions takes place while at high equilibrium concentrations, the sorption process occur by means re-hydration and aminoacids intercalation of hydrotalcite. The results also suggested that Asp and Glu sorption is a temperature dependent process. The amount of sorbed amino acid decreases as the temperature increase. The effect is more pronounced for Glu sorption probably due to its higher hydrophobic character, which makes the sorption more difficult in comparison with sorption of Asp at higher temperature.