14 resultados para copper soil contamination
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Soil microcosms contaminated with crude oil with or without chromium and copper were monitored over a period of 90 days for microbial respiration, biomass, and for dehydrogenase, lipase, acid phosphatase, and arylsulfatase activities. In addition, the community structure was followed by enumerating the total heterotrophic and oil-degrading viable bacteria and by performing a denaturing gradient gel electrophoresis (DGGE) of the PCR amplified 16S rDNA. A significant difference was observed for biochemical activities and microbial community structures between the microcosms comprised of uncontaminated soil, soil contaminated with crude oil and soil contaminated with crude oil and heavy metals. The easily measured soil enzyme activities correlated well with microbial population levels, community structures and rates of respiration (CO2 production). The estimation of microbial responses to soil contamination provides a more thorough understanding of the microbial community function in contaminated soil, in situations where technical and financial resources are limited and may be useful in addressing bioremediation treatability and effectiveness. (C) 2012 Published by Elsevier Ltd.
Resumo:
Biodiesel production has received considerable attention in the recent past as a nonpolluting fuel. However, this assertion has been based on its biodegradability and reduction in exhaust emissions. Assessments of water and soil biodiesel pollution are still limited. Spill simulation with biodiesel and their diesel blends in soils were carried out, aiming at analyzing their cytotoxic and genotoxic potentials. While the cytotoxicity observed may be related to diesel contaminants, the genotoxic and mutagenic effects can be ascribed to biodiesel pollutants. Thus, taking into account that our data stressed harmful effects on organisms exposed to biodiesel-polluted soils, the designation of this biofuel as an environmental-friendly fuel should be carefully reviewed to assure environmental quality. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Food safety is a global concern. Meat represents the most important protein source for humans. Thus, contamination of meat products by nonessential elements is a ready source of human exposure. In addition, knowledge of the concentration of essential elements is also relevant with respect to human nutrition. The aim of the present study was to determine the concentration of 17 elements in pork, beef, and chicken produced in Brazil. Meat samples were analyzed by inductively coupled plasma mass spectrometry. The estimated daily intake for nonessential elements including arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), and antimony (Sb) through meat consumption is below the toxicological reference values. However, high levels were detected for the nonessential element cesium (Cs), mainly in beef samples, an observation that deserves future studies to identify the source of contamination and potential adverse consequences.
Resumo:
Objective: To evaluate the frequency of anti-Toxocara spp. antibodies in an adult healthy population. Methods: The study was performed by interviewing 253 blood donors, from 19 to 65 years of age, in a hematological centre in Presidente Prudente, São Paulo, southeast Brazil. A survey was applied to blood donors in order to evaluate the possible factors associated to the presence of antibodies, including individual (gender and age), socioeconomic (scholarship, familial income and sanitary facilities) and habit information (contact with soil, geophagy, onycophagy and intake of raw/undercooked meat) as well as the presence of dogs or cats in the household. ELISA test was run for detection of the anti-Toxocara spp. IgG antibodies. Bivariate analysis followed by logistic regression was performed to evaluate the potential risk factors associated to seropositivity. Results: The overall prevalence observed in this study was 8.7% (22/253). Contact with soil was the unique risk factor associated with the presence of antibodies (P=0.0178 ; OR=3.52; 95% CI=1.244-9.995) Conclusions. The results of this study reinforce the necessity in promoting preventive public health measures, even for healthy adult individual, particularly those related to the deworming of pets to avoid the soil contamination, and hygiene education of the population.
Serological, clinical and epidemiological evaluation of toxocariasis in urban areas of south Brazil.
Resumo:
Toxocariasis is a worldwide public-health problem that poses major risks to children who may accidentally ingest embryonated eggs of Toxocara. The objectives of this study were to investigate the occurrence of anti-Toxocara spp. antibodies in children and adolescents and the variables that may be involved, as well as environmental contamination by Toxocara spp. eggs, in urban recreation areas of north central mesoregion, Paraná State, Brazil. From June 2005 to March 2007. a total of 376 blood samples were collected by the Public Health Service from children and adolescents one to 12 years old, of both genders. Samples were analyzed by the indirect ELISA method for detection of anti-Toxocara antibodies. Serum samples were previously absorbed with Ascaris suum antigens, and considered positive with a reagent reactivity index ≥1. Soil samples from all of the public squares and schools located in the four evaluated municipalities that had sand surfaces (n = 19) or lawns (n = 15) were analyzed. Of the 376 serum samples, 194 (51.6%) were positive. The seroprevalence rate was substantially higher among children aging one to five years (p = 0.001) and six to eight years (p = 0.022). The clinical signs and symptoms investigated did not show a statistical difference between seropositive and seronegative individuals (p > 0.05). In 76.5% of the investigated recreation places, eggs of Toxocara were detected in at least one of the five collected samples. Recreation areas from public schools were 2.8 times more contaminated than from public squares. It is important to institute educational programs to inform families and educators, as well as to improve sanitary control of animals and cleaning of the areas intended for recreation in order to prevent toxocariasis.
Resumo:
CHEMICAL AND PHYSICAL FACTORS INFLUENCING LEAD AND COPPER CONTAMINATION IN DRINKING WATER: APPROACH FOR A CASE STUDY IN ANALYTICAL CHEMISTRY. Lead and copper concentrations in drinking water increase considerably on going from municipality reservoirs to the households sampled in Ribeirao Preto (SP-Brazil). Flushing of only 3 liters of water reduced metal concentrations by more than 50%. Relatively small changes in water pH rapidly affected corrosion processes in lead pipes, while water hardness appeared to have a long-term effect. This approach aims to encourage University teachers to use its content as a case study in disciplines of Instrumental Analytical Chemistry and consequently increase knowledge about drinking water contamination in locations where no public monitoring of trace metals is in place.
Resumo:
This paper presents the results of electrical resistivity methods in the area delineation that was potentially contaminated by liquefaction products, which are also called putrefactive liquids in Vila Rezende municipal cemetery, Piracicaba, So Paulo, Brazil. The results indicate a depth of water table between 3.1 and 5.1 m, with two groundwater direction flows, one to the SW and another to the SE. Due to the contamination plumes, which have the same groundwater direction flow, as well the conductive anomalies observed in the geoelectric sections, the contamination suspicions in the area were confirmed. The probable plume to the SE extends beyond the limits of the cemetery. The location of the conductive anomalies and the probable contamination plumes showed that the contamination is linked with the depth of the water table and the burial time. Mapping using the geostatistical method of ordinary kriging applied to the work drew structural characteristics of the regional phenomenon and spatial behavior of the electrical resistivity data, resulting in continued surfaces. Thus, this method has proved to be an important tool for mapping contamination plumes in cemeteries.
Resumo:
Sewage sludge has been used to fertilize coffee, increasing the risk of metal contamination in this crop. The aim of this work was to study the effects of Cd, Zn and Ni in adult coffee plants growing under field conditions. Seven-year-old coffee plants growing in the field received one of three;loses of Cd, Zn or Ni: 15,45 and 90 g Cd plant(-1); 35, 105 and 210 g Ni plant(-1); and 100, 300 and 600 g Zn plant(-1), with all three metals in the form of sulphate salts. After three months, we noticed good penetration of the three metals into the soil, especially in the first 50 cm, which is the region where most coffee plant roots are concentrated. Leaf concentrations of K, Ca, Mg, S, B, Cu, Fe and Mn were nor affected. N levels did not change with the application of Ni or Zn but were reduced with either 45 or 90 g Cd plant(-1). Foliar P concentrations decreased with the addition of 45 and 90 g Cd plant(-1) and 600 g Zn plant(-1). Zn levels in leaves were not affected by the application of Cd or Ni. The highest concentrations. of Zn were found in branches (30-230 mg kg(-1)), leaves (7-35 mg kg(-1)) and beam (4-6.5 mg kg(-1)); Ni was found in leaves (4-45 mg kg(-1)), branches (3-18 mg kg(-1)) and beans (1-5 mg kg(-1)); and Cd was found in branches (0-6.2 mg kg(-1)) and beans (0-1.5 mg kg(-1)) but was absent in leaves. The mean yield of two harvests was not affected by Ni, but it decreased at the highest dose of Zn (600 g plant(-1)) and the two higher doses of Cd (45 and 90 g plant(-1)). Plants died when treated with the highest dose of Cd and showed symptoms of toxicity with the highest dose of Zn. Nevertheless, based on the amounts of metal used and the results obtained, we conclude that coffee plants are highly tolerant to the three metals tested. Moreover, even at high doses, there was very little transport to the beans, which is the part consumed by humans. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The increasing contamination of aquatic environments motivates studies on the interactions among natural dissolved organic matter, metals, and the biota. This investigation focused on the organic exudates of the toxic cyanobacteria Cylindrospermopsis raciborskii as a Cu carrier through a three-level aquatic trophic chain (bacteria, protozoa, and copepod). The effects of bacteria activity and growth on the metal-organic complexes were evaluated through changes in free Cu2+ ions, total dissolved, and total particulate Cu. To be sure that the added copper would be complexed to the exudates, its complexing properties were previously determined. The cyanobacteria exudate-Cu complexes were furnished to bacteria that were further used as a food source to the protozoan Paramercium caudatum. This was then furnished as food to the copepod Mesocyclops sp. The results showed that, in general, the cyanobacterial exudates decreased Cu bioavailability and toxicity to the first trophic level (bacteria), but because the heterotrophic bacteria accumulated Cu, they were responsible for the transference for the otherwise low availability metal form. Both the bacteria and protozoan organisms accumulated Cu, but no metal accumulation was detected in the copepods.
Resumo:
Increased agricultural activity in watershed areas has been causing concern over contamination by herbicides in agricultural areas. The problem becomes more important when contamination can affect water for human consumption, as happens with water from the Poxim river, which supplies the city of Aracaju, capital of the State of Sergipe. The aim of this study was to evaluate the risk of contamination by herbicides to both surface and groundwater in the upper sub-basin of the Poxim River, and to detect the presence of the active ingredients Diuron and Ametrine up-river from the sugar-cane plantations. Risk analysis was carried out using criteria from the Environmental Protection Agency (EPA), the GUS index, and the GOSS method. It was observed that several active ingredients are at risk of leaching, demonstrating the importance of monitoring the river to control both the quality of water and the frequency and volume of herbicides used in the region. Based on the results, monitoring was carried out bi-monthly from July 2009 to July 2010 at two sampling points. Water samples were analyzed in the laboratory, where the presence of Diuron and Ametrine was noted. Water quality in the Sub-basin of the Rio Poxim is being influenced by the use of herbicides in the region. There was an increase in herbicide concentration in the surface water during the rainy season, possibly caused by soil runoff.
Resumo:
Mangrove ecosystems are tropical environments that are characterized by the interaction between the land and the sea. As such, this ecosystem is vulnerable to oil spills. Here, we show a culture-independent survey of fungal communities that are found in the sediments of the following two mangroves that are located on the coast of Sao Paulo State (Brazil): (1) an oil-spill-affected mangrove and (2) a nearby unaffected mangrove. Samples were collected from each mangrove forest at three distinct locations (transect from sea to land), and the samples were analyzed by quantitative PCR and internal transcribed spacer (ITS)-based PCR-DGGE analysis. The abundance of fungi was found to be higher in the oil-affected mangrove. Visual observation and correspondence analysis (CA) of the ITS-based PCR-DGGE profiles revealed differences in the fungal communities between the sampled areas. Remarkably, the oil-spilled area was quite distinct from the unaffected sampling areas. On the basis of the ITS sequences, fungi that are associated with the Basidiomycota and Ascomycota taxa were most common and belonged primarily to the genera Epicoccum, Nigrospora, and Cladosporium. Moreover, the Nigrospora fungal species were shown to be sensitive to oil, whereas a group that was described as "uncultured Basidiomycota" was found more frequently in oil-contaminated areas. Our results showed an increase in fungal abundance in the oil-polluted mangrove regions, and these data indicated potential fungal candidates for remediation of the oil-affected mangroves.
Resumo:
Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.
Resumo:
Aspergillus flavus, a haploid organism found worldwide in a variety of crops, including maize, cottonseed, almond, pistachio, and peanut, causes substantial and recurrent worldwide economic liabilities. This filamentous fungus produces aflatoxins (AFLs) B1 and B2, which are among the most carcinogenic compounds from nature, acutely hepatotoxic and immunosuppressive. Recent efforts to reduce AFL contamination in crops have focused on the use of nonaflatoxigenic A. flavus strains as biological control agents. Such agents are applied to soil to competitively exclude native AFL strains from crops and thereby reduce AFL contamination. Because the possibility of genetic recombination in A. flavus could influence the stability of biocontrol strains with the production of novel AFL phenotypes, this article assesses the diversity of vegetative compatibility reactions in isolates of A. flavus to identify heterokaryon self-incompatible (HSI) strains among nonaflatoxigenic isolates, which would be used as biological controls of AFL contamination in crops. Nitrate nonutilizing (nit) mutants were recovered from 25 A. flavus isolates, and based on vegetative complementation between nit mutants and on the microscopic examination of the number of hyphal fusions, five nonaflatoxigenic (6, 7, 9 to 11) and two nontoxigenic (8 and 12) isolates of A. flavus were phenotypically characterized as HSI. Because the number of hyphal fusions is reduced in HSI strains, impairing both heterokaryon formation and the genetic exchanges with aflatoxigenic strains, the HSI isolates characterized here, especially isolates 8 and 12, are potential agents for reducing AFL contamination in crops
Resumo:
In Brazil, the large quantities of solid waste produced are out of step with public policies, technological developments, and government budgets for the division. In small municipalities, the common lack of technological knowledge and financial conditions for suitable waste disposal has resulted in a large number of illegal dumps. Therefore, small sanitary landfill facilities are working with simplified operations focusing on cost reduction and meeting the economic and technological standards of the city without endangering the environment or public health. Currently, this activity is regulated at a federal level although there is some uncertainty regarding the risk of soil and aquifer contamination as theses facilities do not employ liners. Thus, this work evaluates a small landfill to identify changes in soil and groundwater using geotechnical parameters, monitoring wells, and geophysical tests performed by electrical profiling. It is verified that based on current conditions, no contaminants have migrated via underground water aquifers, and overall no significant changes have occurred in the soil. It is concluded that, despite its simplicity, the method investigated is a viable alternative for the final disposal of municipal solid waste from small cities, especially in developing countries.