7 resultados para copepod
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We investigated the influence of nutrient-rich oceanic waters in comparison to the estuarine outflow from Santos Bay (SE Brazil) on copepod abundance and production on the adjacent inner shelf. Zooplankton samples were collected with a Multinet in spring 2005 and in summer 2006. Copepod biomass was derived from length-weight regressions, and growth rates were estimated from empirical models. Altogether, 58 copepod taxa were identified. The highest abundances were due to small-sized organisms including nauplii, oncaeids and copepodids of paracalanids and clausocalanids. Biomass and secondary production mirrored copepod abundance, with Temora copepodids accompanying the above-mentioned taxa as major contributors. The contribution of naupliar biomass and production was low (2.2 and 3.8% of the total, respectively). The influence of the Santos Bay outflow was observed only in spring, when Coastal Water (CW) dominated at the study site; whereas in summer the inner shelf was occupied by CW in the surface layer and the oceanic South Atlantic Central Water (SACW) in the bottom layer. The SACW intrusion had more of an influence for the increase in copepod production than the Santos Bay plume. The distribution and dynamics of the oceanic water masses seemed to be the most important influence on copepod diversity and production at this subtropical site.
Resumo:
We studied the temporal and vertical variability in larvacean abundance and secondary production on a fixed station off southeast Brazil, from January 2007 to December 2008. Larvacean biomass was derived from length weight regressions, and growth rates were estimated from an empirical model. We identified eleven larvacean species. Oikopleura longicauda occurred throughout the studied period and was the most abundant species, followed by Oikopleura fusiformis. Fritillaria haplostoma, O. fusiformis and O. longicauda were found mainly above the thermocline, whereas Oikopleura dioica and Fritillaria pellucida preferred bottom layers. Higher abundance and biomass were observed in warmer months, when the water column was stratified as a result of the bottom intrusions of the cold and nutrient-rich South Atlantic Central Water. Secondary production mirrored the biomass seasonal pattern. Larvacean biomass equaled to less than 10% of copepod biomass during the same period, but larvacean production comprised on average 77% that of copepods, whereas the production of discarded houses and fecal pellets comprised up to 2800% of larvaceans secondary production. This confirms the potential significance of larvaceans in the carbon flux in tropical and subtropical coastal regions. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The physical aspects of the Subtropical Shelf Front (STSF) for the Southwest Atlantic Continental Shelf were previously described. However, only scarce data on the biology of the front is available in the literature. The main goal of this paper is to describe the physical, chemical and biological properties of the STSF found in winter 2003 and summer 2004. A cross-section was established at the historically determined location of the STSF. Nine stations were sampled in winter and seven in summer. Each section included a series of conductivity-temperature-depth (CTD) stations where water samples from selected depths were filtered for nutrient determination. Surface samples were taken for chlorophyll a (Chl-a) determination and plankton net tows carried out above and below the pycnocline. Results revealed that winter was marked by an inner-shelf salinity front and that the STSF was located on the mid-shelf The low salinity waters in the inner-shelf indicated a strong influence of freshwater, with high silicate (72 mu M), suspended matter (45 mg l(-1)), phosphate (2.70 mu M) and low nitrate (1.0 mu M) levels. Total dissolved nitrogen was relatively high (22.98 mu M), probably due to the elevated levels of organic compound contribution close to the continental margin. Surface Chl-a concentration decreased from coastal well-mixed waters, where values up to 8.0 mg m(-3) were registered, to offshore waters. Towards the open ocean, high subsurface nutrients values were observed, probably associated to South Atlantic Central Waters (SACW). Zooplankton and ichthyoplankton abundance followed the same trend; three different groups associated to the inner-, mid- and outer-shelf region were identified. During summer, diluted waters extended over the shelf to join the STSF in the upper layer; the concentration of inorganic nutrients decreased in shallow waters; however, high values were observed between 40 and 60 m and in deep offshore waters. Surface Chl-a ranged 0.07-1.5 mg m(-3); winter levels were higher. Three groups of zoo and ichthyoplankton, separated by the STSF, were also identified. Results of the study performed suggest that the influence of freshwater was stronger during winter and that abundance distribution of Chl-a, copepods and ichthyoplankton was related to the Plata Plume Waters (PPW), rather than to the presence of the STSF. During summer, when the presence of freshwater decreases, plankton interactions seem to take place in the STSF. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The feeding ecology of the Brazilian silverside, Atherinella brasiliensis, in a sub-tropical estuary of Brazil was investigated through the gut analysis of 1431 individuals. We described dietary composition and analysed seasonal, estuarine habitat, and body size variations in the diet; trophic level; feeding diversity; and gut fullness indices. Results reveal that A. brasiliensis is a typical, generalistic and opportunistic predator that makes use of a wide array of prey types (at least 89 different types), with zooplankton (mainly calanoids), diatoms, terrestrial insects, and plant detritus making up the bulk of the overall diet. The exotic calanoid Temora turbinata ranked as the primary prey. A wide feeding diversity (mean H` = 2.26), low trophic level (mean TROPH = 2.57), and high gut replenishment were persistent across seasons and habitats. Diet composition varied largely and significantly with respect to habitat, season, and body size. A closer assessment showed that habitat and season had a stronger effect on diet than fish size.
Resumo:
The increasing contamination of aquatic environments motivates studies on the interactions among natural dissolved organic matter, metals, and the biota. This investigation focused on the organic exudates of the toxic cyanobacteria Cylindrospermopsis raciborskii as a Cu carrier through a three-level aquatic trophic chain (bacteria, protozoa, and copepod). The effects of bacteria activity and growth on the metal-organic complexes were evaluated through changes in free Cu2+ ions, total dissolved, and total particulate Cu. To be sure that the added copper would be complexed to the exudates, its complexing properties were previously determined. The cyanobacteria exudate-Cu complexes were furnished to bacteria that were further used as a food source to the protozoan Paramercium caudatum. This was then furnished as food to the copepod Mesocyclops sp. The results showed that, in general, the cyanobacterial exudates decreased Cu bioavailability and toxicity to the first trophic level (bacteria), but because the heterotrophic bacteria accumulated Cu, they were responsible for the transference for the otherwise low availability metal form. Both the bacteria and protozoan organisms accumulated Cu, but no metal accumulation was detected in the copepods.
Resumo:
The freshwater copepod Odontodiaptomus thomseni (Brehm, 1933) (Calanoida: Diaptomidae) is a rare species that has been reported only once - in its original description (BREHM 1933). The lack of subsequent records led to its inclusion in the Red List of threatened species (IUCN). Here we present a new record for O.thomseni. It was discovered in Salto Grande reservoir, which is located in the lower stretches of the Uruguay River, between Uruguay and Argentina, at the River Plate basin. In January 2010, three specimens (two males and one female) were found, and these were studied in detail using scanning electron microscopy (SEM). We only had material of Odontodiaptomus paulistanus (Wright, 1936) for comparison, but the position of the lateral spine in right P5 of the male, and the shape and size of lateral wings of the female are especially distinctive. Odontodiaptomus thomseni remains a rare species and we recommend keeping it on the IUCN Red List.
Resumo:
Although sex ratios close to unity are expected in dioecious species, biased sex ratios are common in nature. It is essential to understand causes of skewed sex ratios in situ, as they can lead to mate limitation and have implications for the success of natural populations. Female-skewed sex ratios are commonly observed in copepods in situ. Here we discuss the challenges of copepod sex ratio research and provide a critical review of factors determining copepod sex ratios, focusing on 2 main objectives. The first is a critique of the male predation theory, which is currently the main process thought to be responsible for female-skewed sex ratios. It assumes that males have higher mortality because of increased vulnerability to predation during their search for mates. We show that there is little support for the male predation theory, that sex ratios skewed toward females occur in the absence of predation, that sex ratios are not related to predation pressure, and that where sex-skewed predation does occur, it is biased toward females. Our second objective is to suggest alternative hypotheses regarding the determination of sex ratios. We demonstrate that environmental factors, environmental sex determination and sex change have strong effects on copepod sex ratios, and suggest that differential physiological longevity of males and females may be more important in determining sex ratios than previously thought. We suggest that copepod sex ratios are the result of a mixture of factors.