3 resultados para computer forensics tools
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this paper we use Markov chain Monte Carlo (MCMC) methods in order to estimate and compare GARCH models from a Bayesian perspective. We allow for possibly heavy tailed and asymmetric distributions in the error term. We use a general method proposed in the literature to introduce skewness into a continuous unimodal and symmetric distribution. For each model we compute an approximation to the marginal likelihood, based on the MCMC output. From these approximations we compute Bayes factors and posterior model probabilities. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: To evaluate tools for the fusion of images generated by tomography and structural and functional magnetic resonance imaging. METHODS: Magnetic resonance and functional magnetic resonance imaging were performed while a volunteer who had previously undergone cranial tomography performed motor and somatosensory tasks in a 3-Tesla scanner. Image data were analyzed with different programs, and the results were compared. RESULTS: We constructed a flow chart of computational processes that allowed measurement of the spatial congruence between the methods. There was no single computational tool that contained the entire set of functions necessary to achieve the goal. CONCLUSION: The fusion of the images from the three methods proved to be feasible with the use of four free-access software programs (OsiriX, Register, MRIcro and FSL). Our results may serve as a basis for building software that will be useful as a virtual tool prior to neurosurgery.
Resumo:
Abstract Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.