13 resultados para composite load model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Aircraft composite structures must have high stiffness and strength with low weight, which can guarantee the increase of the pay-load for airplanes without losing airworthiness. However, the mechanical behavior of composite laminates is very complex due the inherent anisotropy and heterogeneity. Many researchers have developed different failure progressive analyses and damage models in order to predict the complex failure mechanisms. This work presents a damage model and progressive failure analysis that requires simple experimental tests and that achieves good accuracy. Firstly, the paper explains damage initiation and propagation criteria and a procedure to identify the material parameters. In the second stage, the model was implemented as a UMAT (User Material Subroutine), which is linked to finite element software, ABAQUS (TM), in order to predict the composite structures behavior. Afterwards, some case studies, mainly off-axis coupons under tensile or compression loads, with different types of stacking sequence were analyzed using the proposed material model. Finally, the computational results were compared to the experimental results, verifying the capability of the damage model in order to predict the composite structure behavior. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we discuss the effects of catalyst load with respect to carbon powder for several Pt and Pb-based catalysts, using formic acid as a model molecule. The discussion is based on electrochemical tests, a complete morphological investigation and theoretical calculations. We show that the Pt and Pb-based catalysts presented activity in formic acid oxidation at very low catalyst loads (e.g., 0.5% in respect to the carbon content). Physical characterisations demonstrate that the electrodes are composed of separated phases of Pt and lead distributed in Pt nanometric-sized islands that are heterogeneously dispersed on the carbon support and Pb ultra-small particles homogeneously distributed throughout the entire carbon surface, as demonstrated by the microscopy studies. At high catalyst loads, very large clusters of Pb(x)O(y) could be observed. Electrochemical tests indicated an increase in the apparent resistance of the system (by a factor of 19.7 Omega) when the catalyst load was increased. The effect of lead in the materials was also studied by theoretical calculations (OFT). The main conclusion is that the presence of Pb atoms in the catalyst can improve the adsorption of formic acid in the catalytic system compared with a pure Pt-based catalyst. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The fatigue crack behavior in metals and alloys under constant amplitude test conditions is usually described by relationships between the crack growth rate da/dN and the stress intensity factor range Delta K. In the present work, an enhanced two-parameter exponential equation of fatigue crack growth was introduced in order to describe sub-critical crack propagation behavior of Al 2524-T3 alloy, commonly used in aircraft engineering applications. It was demonstrated that besides adequately correlating the load ratio effects, the exponential model also accounts for the slight deviations from linearity shown by the experimental curves. A comparison with Elber, Kujawski and "Unified Approach" models allowed for verifying the better performance, when confronted to the other tested models, presented by the exponential model. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this article is to present a method which consists in the development of unit cell numerical models for smart composite materials with piezoelectric fibers made of PZT embedded in a non-piezoelectric matrix (epoxy resin). This method evaluates a globally homogeneous medium equivalent to the original composite, using a representative volume element (RVE). The suitable boundary conditions allow the simulation of all modes of the overall deformation arising from any arbitrary combination of mechanical and electrical loading. In the first instance, the unit cell is applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. The numerical results are compared to other methods reported in the literature and also to results previously published, in order to evaluate the method proposal. In the second step, the method is applied to calculate the equivalent properties for smart composite materials with square cross section fibers. Results of comparison between different combinations of circular and square fiber geometries, observing the influence of the boundary conditions and arrangements are presented.
Resumo:
Objectives. The C-Factor has been used widely to rationalize the changes in shrinkage stress occurring at the tooth/resin-composite interfaces. Experimentally, such stresses have been measured in a uniaxial direction between opposed parallel walls. The situation of adjoining cavity walls has been neglected. The aim was to investigate the hypothesis that: within stylized model rectangular cavities of constant volume and wall thickness, the interfacial shrinkage-stress at the adjoining cavity walls increases steadily as the C-Factor increases. Methods. Eight 3D-FEM restored Class I 'rectangular cavity' models were created by MSC.PATRAN/MSC.Marc, r2-2005 and subjected to 1% of shrinkage, while maintaining constant both the volume (20 mm(3)) and the wall thickness (2 mm), but varying the C-Factor (1.9-13.5). An adhesive contact between the composite and the teeth was incorporated. Polymerization shrinkage was simulated by analogy with thermal contraction. Principal stresses and strains were calculated. Peak values of maximum principal (MP) and maximum shear (MS) stresses from the different walls were displayed graphically as a function of C-Factor. The stress-peak association with C-Factor was evaluated by the Pearson correlation between the stress peak and the C-Factor. Results. The hypothesis was rejected: there was no clear increase of stress-peaks with C-Factor. The stress-peaks particularly expressed as MP and MS varied only slightly with increasing C-Factor. Lower stress-peaks were present at the pulpal floor in comparison to the stress at the axial walls. In general, MP and MS were similar when the axial wall dimensions were similar. The Pearson coefficient only expressed associations for the maximum principal stress at the ZX wall and the Z axis. Significance. Increase of the C-Factor did not lead to increase of the calculated stress-peaks in model rectangular Class I cavity walls. (C) 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The expression of Langerhans cell (LC) and dermal dendritic cell (dDC) as well as T CD4+ and CD8+ immune responses was evaluated in the skin of BALB/c mice experimentally infected by L. (L.) amazonensis (La) and L. (V.) braziliensis (Lb). At 4th and 8th weeks post infection (PI), skin biopsies were collected to determine the parasite load and CD207+, CD11c+, CD4+, CD8+, iNOS+ cellular densities. Cytokine (IFN-?, IL-4 and IL-10) profiles were also analysed in draining lymph node. At 4th week, the densities of CD207+ and CD11c+ were higher in the La infection, while in the Lb infection, these markers revealed a significant increase at 8th week. At 4th week, CD4+ and CD8+ were higher in the La infection, but at 8th week, there was a substantial increase in both markers in the Lb infection. iNOS+ was higher in the Lb infection at 4th and 8th weeks. In contrast, the parasite load was higher in the La infection at 4th and 8th weeks. The concentration of IFN-? was higher in the Lb infection, but IL-4 and IL-10 were higher in the La infection at 4th and 8th weeks. These results confirm the role of the Leishmania species in the BALB/c mice disease characterized by differences in the expression of dendritic cells and cellular immune response.
Human Fallopian Tube Mesenchymal Stromal Cells Enhance Bone Regeneration in a Xenotransplanted Model
Resumo:
We have recently reported that human fallopian tubes, which are discarded during surgical procedures of women submitted to sterilization or hysterectomies, are a rich source of human fallopian tube mesenchymal stromal cells (htMSCs). It has been previously shown that human mesenchymal stromal cells may be useful in enhancing the speed of bone regeneration. This prompted us to investigate whether htMSCs might be useful for the treatment of osteoporosis or other bone diseases, since they present a pronounced capacity for osteogenic differentiation in vitro. Based on this prior knowledge, our aim was to evaluate, in vivo, the osteogenic capacity of htMSCs to regenerate bone through an already described xenotransplantation model: nonimmunosuppressed (NIS) rats with cranial defects. htMSCs were obtained from five 30-50 years old healthy women and characterized by flow cytometry and for their multipotenciality in vitro capacity (osteogenic, chondrogenic and adipogenic differentiations). Two symmetric full-thickness cranial defects on each parietal region of seven NIS rats were performed. The left side (LS) of six animals was covered with CellCeram (Scaffdex)-a bioabsorbable ceramic composite scaffold that contains 60% hydroxyapatite and 40% beta-tricalciumphosphate-only, and the right side (RS) with the CellCeram and htMSCs (10(6) cells/scaffold). The animals were euthanized at 30, 60 and 90 days postoperatively and cranial tissue samples were taken for histological analysis. After 90 days we observed neobone formation in both sides. However, in animals euthanized 30 and 60 days after the procedure, a mature bone was observed only on the side with htMSCs. PCR and immunofluorescence analysis confirmed the presence of human DNA and thus that human cells were not rejected, which further supports the imunomodulatory property of htMSCs. In conclusion, htMSCs can be used successfully to enhance bone regeneration in vivo, opening a new field for future treatments of osteoporosis and bone reconstruction.
Resumo:
Background: This study evaluated a wide range of viral load (VL) thresholds to identify a cut-point that best predicts new clinical events in children on stable highly active antiretroviral therapy (HAART). Methods: Cox proportional hazards modeling was used to assess the adjusted risk for World Health Organization stage 3 or 4 clinical events (WHO events) as a function of time-varying CD4, VL, and hemoglobin values in a cohort study of Latin American children on HAART >= 6 months. Models were fit using different VL cut-points between 400 and 50,000 copies per milliliter, with model fit evaluated on the basis of the minimum Akaike information criterion value, a standard model fit statistic. Results: Models were based on 67 subjects with WHO events out of 550 subjects on study. The VL cut-points of >2600 and >32,000 copies per milliliter corresponded to the lowest Akaike information criterion values and were associated with the highest hazard ratios (2.0, P = 0.015; and 2.1, P = 0.0058, respectively) for WHO events. Conclusions: In HIV-infected Latin American children on stable HAART, 2 distinct VL thresholds (>2600 and >32,000 copies/mL) were identified for predicting children at significantly increased risk for HIV-related clinical illness, after accounting for CD4 level, hemoglobin level, and other significant factors.
Resumo:
The objectives of the present study were to characterize and define homogenous production environments of composite beef cattle in Brazil in terms of climatic and geographic variables using multivariate exploratory techniques and to use them to assess the presence of G x E for birth weight (BW) and weaning weight (WW). Data from animals born between 1995 and 2008 on 36 farms located in 27 municipalities of the Brazilian states were used. Fifteen years of climate observations (mean minimum and maximum annual temperature and mean annual rainfall) and geographic (latitude, longitude and altitude) data were obtained for each municipality where the farms were located for characterization of the production environments. Hierarchical and nonhierarchical cluster analysis was used to group farms located in regions with similar environmental variables into clusters. Six clusters of farms were formed. The effect of sire-cluster interaction was tested by single-trait analysis using deviance information criterion (DIC). Genetic parameters were estimated by multi-trait analysis considering the same trait to be different in each cluster. According to the values of DIC, the inclusion of sire-cluster effect did not improve the fit of the genetic evaluation model for BW and WW. Estimates of genetic correlations among clusters ranged from -0.02 to 0.92. The low genetic correlation among the most studied regions permits us to suggest that a separate genetic evaluation for some regions should be undertaken. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The uplift capacity of helical anchors normally increases with the number of helical plates. The rate of capacity gain is variable, considering that the disturbance caused by the anchor installation is generally more pronounced in the soil mass above the upper plates than above the lower plates, because the upper soil layers are penetrated more times. The present investigation examines the effect of the number of helices on the performance of helical anchors in sand, based on the results of centrifuge model tests. Uplift loading tests were performed on 12 different types of piles installed in two containers of dry sand prepared with different densities. The measured fractions of the uplift capacity related to each individual helical plate of multi-helix anchors were compared with the fractions predicted by the individual bearing method. The results of this investigation indicate that in double- and triple-helix anchors, the contributions of the second and third plate to the total anchor uplift capacity decreased with the increase of sand relative density and plate diameter. In addition, these experiments demonstrated that the variation of the anchor load-displacement behavior with the number of helices also depends on these parameters.
Resumo:
Background: Smoking is the most relevant environmental factor that affects the development of aortic aneurysm. Smokers have elevated levels of elastase activity in the arterial wall, which leads to weakening of the aorta. The aim of this study was to verify whether cigarette smoke exposure itself is capable of altering the aortic wall. Methods: Forty-eight Wistar rats were divided into 2-, 4-, and 6-month experimental periods and into 2 groups: smokers (submitted to smoke exposure at a rate of 40 cigarettes/day) and nonsmokers. At the end of the experimental periods, the aortas were removed and crosssectioned to obtain histologic specimens for light microscopic and morphometric analyses. The remaining longitudinal segments were stretched to rupture and mechanical parameters were determined. Results: A degenerative process (i.e., a reduction in elastic fibers, the loss of lamellar arrangement, and a reduction of smooth muscle cells) was observed, and this effect was proportional in intensity to the period of tobacco exposure. We observed a progressive reduction in the yield point of the thoracic aorta over time (P < 0.05). There was a decrease in stiffness (P < 0.05) and in failure load (P < 0.05) at 6 months in the abdominal aorta of rats in the smoking group. Conclusions: Chronic exposure to tobacco smoke can affect the mechanical properties of the aorta and can also provoke substantial structural changes of the arterial wall
Resumo:
This study evaluated the effectiveness of different sealants applied to a nanofiller composite resin. Forty specimens of Filtek Z-350 were obtained after inserting the material in a 6x3 mm stainless steel mold followed by light activation for 20 s. The groups were divided (n=10) according to the surface treatment applied: Control group (no surface treatment), Fortify, Fortify Plus and Biscover LV. The specimens were subjected to simulated toothbrushing using a 200 g load and 250 strokes/min to simulate 1 week, 1, 3 and 6 months and 1 and 3 years in the mouth, considering 10,000 cycles equivalent to 1 year of toothbrushing. Oral-B soft-bristle-tip toothbrush heads and Colgate Total dentifrice at a 1:2 water-dilution were used. After each simulated time, surface roughness was assessed in random triplicate readings. The data were submitted to two-way ANOVA and Tukey's test at a 95% confidence level. The specimens were observed under scanning electron microscopy (SEM) after each toothbrushing cycle. The control group was not significantly different (p>0.05) from the other groups, except for Fortify Plus (p<0.05), which was rougher. No significant differences (p>0.05) were observed at the 1-month assessment between the experimental and control groups. Fortify and Fortify Plus presented a rougher surface over time, differing from the baseline (p<0.05). Biscover LV did not differ (p>0.05) from the baseline at any time. None of the experimental groups showed a significantly better performance (p>0.05) than the control group at any time. SEM confirmed the differences found during the roughness testing. Surface penetrating sealants did not improve the roughness of nanofiller composite resin.
Resumo:
This paper shows theoretical models (analytical formulations) to predict the mechanical behavior of thick composite tubes and how some parameters can influence this behavior. Thus, firstly, it was developed the analytical formulations for a pressurized tube made of composite material with a single thick ply and only one lamination angle. For this case, the stress distribution and the displacement fields are investigated as function of different lamination angles and reinforcement volume fractions. The results obtained by the theoretical model are physic consistent and coherent with the literature information. After that, the previous formulations are extended in order to predict the mechanical behavior of a thick laminated tube. Both analytical formulations are implemented as a computational tool via Matlab code. The results obtained by the computational tool are compared to the finite element analyses, and the stress distribution is considered coherent. Moreover, the engineering computational tool is used to perform failure analysis, using different types of failure criteria, which identifies the damaged ply and the mode of failure.