5 resultados para communication networks

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values. (C) 2011 Elsevier By. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we have quantified the consistency of word usage in written texts represented by complex networks, where words were taken as nodes, by measuring the degree of preservation of the node neighborhood. Words were considered highly consistent if the authors used them with the same neighborhood. When ranked according to the consistency of use, the words obeyed a log-normal distribution, in contrast to Zipf's law that applies to the frequency of use. Consistency correlated positively with the familiarity and frequency of use, and negatively with ambiguity and age of acquisition. An inspection of some highly consistent words confirmed that they are used in very limited semantic contexts. A comparison of consistency indices for eight authors indicated that these indices may be employed for author recognition. Indeed, as expected, authors of novels could be distinguished from those who wrote scientific texts. Our analysis demonstrated the suitability of the consistency indices, which can now be applied in other tasks, such as emotion recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work clarifies the relationship between network circuit (topology) and behavior (information transmission and synchronization) in active networks, e. g. neural networks. As an application, we show how to determine a network topology that is optimal for information transmission. By optimal, we mean that the network is able to transmit a large amount of information, it possesses a large number of communication channels, and it is robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement called accessibility has been proposed as a means to quantify the efficiency of the communication between nodes in complex networks. This article reports results regarding the properties of accessibility, including its relationship with the average minimal time to visit all nodes reachable after h steps along a random walk starting from a source, as well as the number of nodes that are visited after a finite period of time. We characterize the relationship between accessibility and the average number of walks required in order to visit all reachable nodes (the exploration time), conjecture that the maximum accessibility implies the minimal exploration time, and confirm the relationship between the accessibility values and the number of nodes visited after a basic time unit. The latter relationship is investigated with respect to three types of dynamics: traditional random walks, self-avoiding random walks, and preferential random walks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fraud is a global problem that has required more attention due to an accentuated expansion of modern technology and communication. When statistical techniques are used to detect fraud, whether a fraud detection model is accurate enough in order to provide correct classification of the case as a fraudulent or legitimate is a critical factor. In this context, the concept of bootstrap aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the adjusted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper, for the first time, we aim to present a pioneer study of the performance of the discrete and continuous k-dependence probabilistic networks within the context of bagging predictors classification. Via a large simulation study and various real datasets, we discovered that the probabilistic networks are a strong modeling option with high predictive capacity and with a high increment using the bagging procedure when compared to traditional techniques. (C) 2012 Elsevier Ltd. All rights reserved.