3 resultados para coastal ecosystems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper provides a paleoenvironmental reconstruction of a Late Quaternary lagoon system in the Jaguaruna region of Santa Catarina state, southern Brazil. Integrated results of bulk sedimentary organic matter characterization (delta C-13, delta N-15 and C/N), microfossil (pollen and diatom) and grain-size analysis from three shallow cores (similar to 2.5m depth) allowed us to propose an evolving paleogeographic scenario in this coastal region for the last ca. 5500 cal a BP. The lagoonal system in this area was more extensive during the mid-Holocene than today, with a gradual and continuous lagoon-sea disconnection until the present. We add to the debate regarding relative sea-level (RSL) variations for the Brazilian coast during the Holocene and discuss the importance of sedimentary dynamics for interpreting changes in coastal ecosystems. The multi-proxy analysis suggests that changes in coastal ecosystems could be directly related to local sedimentary processes, which are not necessarily linked to RSL fluctuations and/or to climatic variations. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
Trampling by human visitors to rocky shores is a known stressor on macroorganisms. However, the effects of trampling on rocky intertidal biofilm, a complex association of microorganisms of ecological importance in coastal communities, have not been quantified. We evaluated the impact of trampling frequency and intensity on total biomass of epilithic microalgae on intertidal rocky shores in the southeast of Brazil. There was a trend of increase in the variability of biomass of biofilm in function of intensity of trampling, but no significant effects emerged among trampling treatments. The low influence of trampling on biofilm might be a result of the small dimensions of the organisms coupled with their natural resilience and roughness of the substrate; the former preventing the removal of biofilm layers by shoes and facilitating their quick recovery. Our results provide insights for management and conservation of coastal ecosystems revealing a weaker impact of trampling on biofilm than that reported on macroorganisms. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Estuaries are extremely dynamic environments that are vulnerable to anthropogenic alterations. Thus, monitoring phytoplankton abundances and composition is an essential tool for the prediction of eutrophication and its effects on coastal ecosystems. Phytoplankton biomass, as chlorophyll-a, in the São Vicente estuary (Brazil) varies in response to tidal cycles and seasonal rainfall. Objectives. To present two datasets designed to assess the relationship between chlorophyll-a and changes in water turbidity driven by tide and rain. Methods. Weekly observations were made in the shallow embayment (February to September 2008; site 1) and observations recorded on alternate days (summer 2010, site 2). Results. At site 1, turbidity differed between high and low tides, but on most days was over 3000 RU, maintaining moderate chlorophyll-a levels (4 mg.m-3) and only two blooms developed during low turbidity. Site 2 mean turbidity was 1500 RU, nutrient level was higher during neap tides and phytoplankton blooms were mainly observed at the end of neap tides at 15-day intervals, dominated by chain-forming diatoms and occasionally flagellates and pennate diatoms. Conclusions. Taxonomic composition of the blooms was different and their frequency altered by events characterized by intense freshwater discharges from the Henry Borden Hydroelectric Dam (> 9*106.m³), inhibiting phytoplankton accumulation during neap tide periods.