2 resultados para clay soil

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

DISTRIBUTION OF NITROGEN AMMONIUM SULFATE (N-15) SOIL-PLANT SYSTEM IN A NO-TILLAGE CROP SUCCESSION The N use by maize (Zea mays, L.) is affected by N-fertilizer levels. This study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of N use by maize in a crop succession, based on N-15-labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signalgrass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of N rates of 60, 120 and 180 kg ha(-1) in the form of labeled N-15 ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated N; fertilizer-derived N in corn plants and pasture; fertilizer-derived N in the soil; and recovery of fertilizer-N by plants and soil were evaluated. The highest uptake of fertilizer N by corn was observed after application of 120 kg ha(-1) N and the residual effect of N fertilizer on subsequent corn and Brachiaria was highest after application of 180 kg ha(-1) N. After the crop succession, soil N recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha(-1) N.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a field experiment performed in Lins County (Sao Paulo State, Brazil), treated sewage effluent (TSE) irrigation increased sugarcane yield but caused an excessive increase in the exchangeable sodium percentage (ESP) and clay dispersion after 16 months due to an intense irrigation regime (2500 mm/16 months) with sodium rich effluents. After two additional complete cycles with lower TSE irrigation rates (1200 mm year(-1)), 1700 kg ha(-1) of phosphogypsum was added to a section of the irrigated plots to evaluate its residence time and its implications on Na+ dynamics and other soil properties. Undisturbed soil cores were taken 2 years after phosphogypsum application to verify soil physical properties up to 0.2 m depth, and disturbed soil samples were taken every year up to 1 m depth for chemical analyses. After 5 years of consecutive TSE irrigation (2005-2010), soil acidity (pH approximate to 5) and basic cations (Ca approximate to 12, Mg approximate to 6 and K approximate to 2 mmol(c) kg(-1)) were maintained in adequate conditions for plant development without the necessity of liming, while acidity was increased (pH approximate to 4.5) and Ca (approximate to 9 mmol(c) kg(-1)), and the Mg (approximate to 4.5 mmol(c) kg(-1)) concentration decreased in the rainfed without phosphogypsum treatment. An increase in water retention capacity at -30 (from 0.14 to 0.17 m(3) m(-3)) and -1500 kPa (from 0.08 to 0.12 m(3) m(-3)) potentials was also observed in all TSE irrigated treatments. The plots with a phosphogypsum treatment showed average increases of 2 mmol(c) kg(-1) of Ca2+ and 7 mg kg(-1) of S-SO42- in all soil profiles and an average reduction of 2 mmol(c) kg(-1) of Na+ up to 0.4 m from 2008 to 2009. However, the extent of the chemical effects was greater after the first year compared to the second year. The high concentration of Na+ found in previous studies performed in the same area returned to low concentrations after continued TSE irrigation at lower rates, even without the phosphogypsum application. An unusual phosphorus migration was observed to the 0.4-0.8 m soil layer as a result of TSE irrigation, most likely due to a high pH and a Na carbonate-dominated TSE. (C) 2012 Elsevier B.V. All rights reserved.