2 resultados para chondrite

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes (182,183,184,186)Wand (179,180)Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+ LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the (182)W/(184)Wand (183)W/(184)Wratios, with deficits in (182)W and (183)W with respect to (184)W. The (186)W/(184)W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar (182)W/(184)W, (183)W/(184)W, and (186)W/(184)W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their (182)W/(184)W, (183)W/(184)W, and (179)Hf/(180)Hf isotopic compositions, although a small adjustment in the s-process production of (183)W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the (186)W/(184)W ratios observed in the SiC grains, even when the current (185)W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e. g., the formation of the (13)C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the (22)Ne neutron source) may affect current s-process predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cretaceous Banhado alkaline complex in southeastern Brazil presents two potassic SiO2-undersaturated series. The high-Ca magmatic series consist of initially fractionated olivine (Fo(92-91)) + diopside (Wo(48-43)En(49-35)Ae(0-7)), as evidenced by the presence of xenocrysts and xenoliths. In that sequence, diopside (Wo(47-38)En(46-37)Ae(0-8)) + phlogopite + apatite + perovskite (Prv(> 92)) crystallized to form the phlogopite melteigite and led to the Ca enrichment of the magma. Diopside (Wo(47-41)En(32-24) Ae(3-14)) continued to crystallize as an early mafic mineral, followed by nepheline (Ne(74.8-70.1)Ks(26.3-21.2)Qz(7.6-0.9)) and leucite (Lc(65-56)) and subsequently by melanite and potassic feldspar (Or(85-99)Ab(1-7)) to form melanite ijolites, wollastonite-melanite urtites and melanite-nepheline syenites. Melanite-pseudoleucite-nepheline syenites are interpreted to be a leucite accumulation. Melanite nephelinite dykes are believed to represent some of the magmatic differentiation steps. The low-Ca magmatic series is representative of a typical fractionation of aegirine-augite (Wo(36-29)En(25-4)Ae(39-18)) + alkali feldspar (Or(57-96)Ab(3-43)) + nepheline (Ne(76.5-69.0)Ks(19.9-14.4)Qz(15.1-7.7)) + titanite from phonolite magma. The evolution of this series from potassic nepheline syenites to sodic sodalite syenites and sodalitolites is attributed to an extensive fractionation of potassic feldspar, which led to an increase of the NaCl activity in the melt during the final stages forming sodalite-rich rocks. Phonolite dykes followed a similar evolutionary process and also registered some crustal assimilation. The mesocratic nepheline syenites showed interactions with phlogopite melteigites, such as compatible trace element enrichments and the presence of diopside xenocrysts, which were interpreted to be due to a mixing/mingling process of phonolite and nephelinite magmas. The geochemical data show higher TiO2 and P2O5 contents and lower SiO2 contents for the high-Ca series and different LILE evolution trends and REE chondrite-normalized patterns as compared to the low-Ca series. The Sr-87/Sr-86, Nd-143/Nd-144, Pb-206/Pb-204 and Pb-208/Pb-204 initial ratios for the high-Ca series (0.70407-0.70526, 0.51242-0.51251, 17.782-19.266 and 38.051-39.521, respectively) were slightly different from those of the low-Ca series (0.70542-0.70583, 0.51232-0.51240, 17.758-17.772 and 38.021-38.061, respectively). For both series, a CO2-rich potassic metasomatized lithospheric mantle enriched the source with rutile-bearing phlogopite clinopyroxenite veins. Kamafugite-like parental magma is attributed to the high-Ca series with major contributions from the melting of the veins. Potassic nephelinite-like parental magma is assigned to the low-Ca series, where the metasomatized wall-rock played a more significant role in the melting process.