3 resultados para chemosynthetic ecosystems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Sunken parcels of macroalgae and wood provide important oases of organic enrichment at the deep-sea floor, yet sediment community structure and succession around these habitat islands are poorly evaluated. We experimentally implanted 100-kg kelp falls and 200 kg wood falls at 1670 m depth in the Santa Cruz Basin to investigate (1) macrofaunal succession and (2) species overlap with nearby whale-fall and cold-seep communities over time scales of 0.25-5.5 yr. The abundance of infaunal macrobenthos was highly elevated after 0.25 and 0.5 yr near kelp parcels with decreased macrofaunal diversity and evenness within 0.5 m of the falls. Apparently opportunistic species (e.g., two new species of cumaceans) and sulfide tolerant microbial grazers (dorvilleid polychaetes) abounded after 0.25-0.5 yr. At wood falls, opportunistic cumaceans become abundant after 0.5 yr, but sulfide tolerant species only became abundant after 1.8-5.5 yr, in accordance with the much slower buildup of porewater sulfides at wood parcels compared with kelp falls. Species diversity decreased significantly over time in sediments adjacent to the wood parcels, most likely due to stress resulting from intense organic loading of nearby sediments (up to 20-30% organic carbon). Dorvilleid and ampharetid polychaetes were among the top-ranked fauna at wood parcels after 3.0-5.5 yr. Sediments around kelp and wood parcels provided low-intensity reducing conditions that sustain a limited chemoautrotrophically-based fauna. As a result, macrobenthic species overlap among kelp, wood, and other chemosynthetic habitats in the deep NE Pacific are primarily restricted to apparently sulfide tolerant species such as dorvilleid polychaetes, opportunistic cumaceans, and juvenile stages of chemosymbiont containing vesicomyid bivalves. We conclude that organically enriched sediments around wood falls may provide important habitat islands for the persistence and evolution of species dependent on organic- and sulfide-rich conditions at the deep-sea floor and contribute to beta and gamma diversity in deep-sea ecosystems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Two recently developed instruments, the Laser Optical Plankton Counter (LOPC) and the Zooscan, have been applied to study zooplankton biomass size spectra in tropical and subtropical marine ecosystems off Brazil. Both technologies rely on optical measurements of particles and may potentially be used in zooplankton monitoring programs. Vertical profiles of the LOPC installed in a 200 mu m ring net have been obtained from diverse environmental settings ranging from turbid and nearshore waters to oligotrophic open ocean conditions. Net samples were analyzed on the Zooscan and counted under a microscope. Particle biovolume in the study area estimated with the LOPC correlated with plankton displacement volume from the net samples, but there was no significant relationship between total areal zooplankton biomass determined with LOPC and the Zooscan. Apparently, normalized biomass size spectra (NBSS) of LOPC and Zooscan overlapped for particles in the size range of 500 to 1500 mu m in equivalent spherical diameter (ESD), especially at open ocean stations. However, the distribution of particles into five size classes was statistically different between both instruments at 24 of 28 stations. The disparities arise from unequal flow estimates, from different sampling efficiencies of LOPC tunnel and net for large and small particles, and possibly from the interference of non-zooplankton material in the LOPC signal. Ecosystem properties and technical differences therefore limit the direct comparability of the NBSS slopes obtained with both instruments during this study, and their results should be regarded as complementary.
Resumo:
The aim of the present study is to contribute an ecologically relevant assessment of the ecotoxicological effects of pesticide applications in agricultural areas in the tropics, using an integrated approach with information gathered from soil and aquatic compartments. Carbofuran, an insecticide/nematicide used widely on sugarcane crops, was selected as a model substance. To evaluate the toxic effects of pesticide spraying for soil biota, as well as the potential indirect effects on aquatic biota resulting from surface runoff and/or leaching, field and laboratory (using a cost-effective simulator of pesticide applications) trials were performed. Standard ecotoxicological tests were performed with soil (Eisenia andrei, Folsomia candida, and Enchytraeus crypticus) and aquatic (Ceriodaphnia silvestrii) organisms, using serial dilutions of soil, eluate, leachate, and runoff samples. Among soil organisms, sensitivity was found to be E. crypticus < E. andrei < F. candida. Among the aqueous extracts, mortality of C. silvestrii was extreme in runoff samples, whereas eluates were by far the least toxic samples. A generally higher toxicity was found in the bioassays performed with samples from the field trial, indicating the need for improvements in the laboratory simulator. However, the tool developed proved to be valuable in evaluating the toxic effects of pesticide spraying in soils and the potential risks for aquatic compartments. Environ. Toxicol. Chem. 2012;31:437-445. (C) 2011 SETAC