24 resultados para cellulose solution in ionic liquids

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations have been performed for ionic liquids based on a ternary mixture of lithium and ammonium cations and a common anion, bis(trifluoromethylsulfonyl)imide, [Tf2N](-). We address structural changes resulting from adding Li+ in ionic liquids with increasing length of an ether-functionalized chain in the ammonium cation. The calculation of static structure factors reveals the lithium effect on charge ordering and intermediate range order in comparison with the neat ionic liquids. The charge ordering is modified in the lithium solution because the coordination of [Tf2N](-) toward Li+ is much stronger than ammonium cations. Intermediate range order is observed in neat ionic liquids based on ammonium cations with a long chain, but in the lithium solutions, there is also a nonhomogenous distribution of Li+ cations. The presence of Li+ enhances interactions between the ammonium cations due to correlations between the oxygen atom of the ether chain and the nitrogen atom of another ammonium cation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigates pure ionic liquids (ILs) derived from an imidazolium ring with different carbonic chains and halides or bis(trifluoromethanesulfonilimide) (TFSI-) as anions, using X-ray absorption near edge spectroscopy (XANES) at different energies (N, S, O, F, and Cl edges) to probe the interionic interactions. XANES data show that the interaction with the anion is weaker when the cation is an imidazolium than when the salt is formed by smaller cations, as lithium, independently of the length of the carbonic chain attached to the imidazolium cation. The results also show that, for all studied as, it is not observed any influence of the anion on the XANES spectra of the cation, nor the opposite. 1-Methylimidazolium with Cl-, a small and strongly coordinating anion, presents in the N K XANES spectrum a splitting of the band corresponding to nitrogen in the imidazolic ring, indicating two different chemical environments. For this cation with TFSI-, on the contrary, this splitting was not observed, showing that the anion has a weaker interaction with the imidazolic ring, even without a lateral carbonic chain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information on the solvation in mixtures of water, W, and the ionic liquids, ILs, 1-allyl-3-R-imidazolium chlorides; R = methyl, 1-butyl, and 1-hexyl, has been obtained from the responses of the following solvatochromic probes: 2,6-dibromo-4-[(E)-2-(1-R-pyridinium-4-yl)ethenyl] phenolate, R = methyl, MePMBr2; 1-octyl, OcPMBr(2), and the corresponding quinolinium derivative, MeQMBr(2). A model developed for solvation in binary mixtures of W and molecular solvents has been extended to the present mixtures. Our objective is to assess the relevance to solvation of hydrogen-bonding and the hydrophobic character of the IL and the solvatochromic probe. Plots of the medium empirical polarity, E-T(probe) versus its composition revealed non-ideal behavior, attributed to preferential solvation by the IL and, more efficiently, by the IL-W hydrogen-bonded complex. The deviation from linearity increases as a function of increasing number of carbon atoms in the alkyl group of the IL, and is larger than that observed for solvation by W plus molecular solvents (1-propanol and 2-(1-butoxy)ethanol) that are more hydrophobic than the ILs investigated. This enhanced deviation is attributed to the more organized structure of the ILs proper, which persists in their aqueous solutions. MeQMBr(2) is more susceptible to solvent lipophilicity than OcPMBr(2), although the former probe is less lipophilic. This enhanced susceptibility agrees with the important effect of annelation on the contributions of the quinonoid and zwitterionic limiting structures to the ground and excited states of the probe, hence on its response to both medium composition and lipophilicity of the IL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids based on 1-alkyl-3-methylimidazolium cations and the hydrogen sulfate (or bisulfate) anion, HSO4-, are much more viscous than ionic liquids with alkyl sulfates, RSO4-. The structural origin of the high viscosity of HSO4- ionic liquids is unraveled from detailed comparison of the anion Raman bands in 1-ethyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium hydrogen sulfate with available data for simple HSO(4)(-) salts in crystalline phase, molten phase, and aqueous solution. Two Raman bands at 1046 and 1010 cm(-1) have been assigned as symmetric stretching modes nu(s)(S = O) of HSO4-, the latter being characteristic of chains of hydrogen-bonded anions. The intensity of this component increases in the supercooled liquid phase. For comparison purposes, Raman spectra of 1-ethyl-3-methylimidazolium ethyl sulfate and 1-butyl-3-methylimidazolium methyl sulfate have been also obtained. There is no indication of difference in the strength of hydrogen bond interactions of imidazolium cations with HSO4- or RSO4- anions. Raman spectra at high pressures, up to 2.6 GPa, are also discussed. Raman spectroscopy provides evidence that hydrogen-bonded anions resulting in anion-anion interaction is the reason for the high viscosity of imidazolium ionic liquids with HSO4-. If the ionic liquid is exposed to moisture, these structures are disrupted upon absorption of water from the atmosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the advancement of magnetic ionic liquids (MILs) as stable dispersions of surface-modified gamma-Fe2O3, Fe3O4, and CoFe2O4 magnetic nanoparticles (MNPs) in a hydrophobic ionic liquid, 1-n-butyl 3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). The MNPs were obtained via coprecipitation and were characterized using powder X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy, and magnetic measurements. The surface-modified MNPs (SM-MNPs) were obtained via the silanization of the MNPs with the aid of 1-butyl-3[3-(trimethoxysilyl)propyl]imidazolium chloride (BMSPI.Cl). The SM-MNPs were characterized by Raman spectroscopy and Fourier trail: form infrared attenuated total reflectance (FTIR-ATR) spectroscopy and by magnetic measurements. The FTIR-ATR spectra of the SM-MNPs exhibited characteristic absorptions of the imidazolium and those of the Fe-O-Si-C moieties, confirming the presence of BMSPI.Cl on the MNP surface. Thermogravimetric analysis (TGA) showed that the SM-MNPs were modified by at least one BMSPI.Cl monolayer. The MILs were characterized using Raman spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The Raman and DSC results indicated an interaction between the SM-MNPs and the IL. This interaction promotes the formation of a supramolecular structure close to the MNP surface that mimics the IL structure and is responsible for the stability of the MIL. Magnetic measurements of the MILs indicated no hysteresis. Superparamagnetic behavior and a saturation magnetization of similar to 22 emu/g could be inferred from the magnetic measurements of a sample containing 50% w/w gamma-Fe2O3 SM-MNP/BMI-NTf2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive and fast-responding membrane-free amperometric gas sensor is described, consisting of a small filter paper foil soaked with a room temperature ionic liquid (RTIL), upon which three electrodes are screen printed with carbon ink, using a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs as well as their easy immobilization into a porous and inexpensive supporting material such as paper. Moreover, thanks to a careful control of the preparation procedure, a very close contact between the RTIL and electrode material can be achieved so as to allow gaseous analytes to undergo charge transfer just as soon as they reach the three-phase sites where the electrode material, paper supported RTIL and gas phase meet. Thus, the adverse effect on recorded currents of slow steps such as analyte diffusion and dissolution in a solvent is avoided. To evaluate the performance of this device, it was used as a wall-jet amperometric detector for flow injection analysis of 1-butanethiol vapours, adopted as the model gaseous analyte, present in headspace samples in equilibrium with aqueous solutions at controlled concentrations. With this purpose, the RTIL soaked paper electrochemical detector (RTIL-PED) was assembled by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide as the wicking RTIL and printing the working electrode with carbon ink doped with cobalt(II) phthalocyanine, to profit from its ability to electrocatalyze thiol oxidation. The results obtained were quite satisfactory (detection limit: 0.5 mu M; dynamic range: 2-200 mu M, both referring to solution concentrations; correlation coefficient: 0.998; repeatability: +/- 7% RSD; long-term stability: 9%), thus suggesting the possible use of this device for manifold applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the results of the characterization of polymer electrolytes using gelatin matrix doped with europium triflate and/or different ionic liquids. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy. Electrolyte samples are thermally stable up to approximately 220 degrees C. All the materials synthesized are totally amorphous. The room temperature conductivity maximum of this electrolyte system is based on ionic liquid 1-ethyl-3-methylimidazolium acetate, (C(2)mim)(OAc) (1.18 x 10(-4) S cm(-1) at 30 degrees C). The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. This new series of materials represents a promising alternative in polymer electrolytes research field. The preliminary studies carried out with electrochromic devices (ECDs) incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of "smart windows". This new materials, will open a land of promising applications in many areas: optics, energy, medicine for example as membranes and separation devices, ECD-based devices, sensors, etc. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the homogeneous acylation of microcrystalline cellulose, MCC, with carboxylic acid anhydrides with different acyl chain-length (Nc; ethanoic to hexanoic) in LiCl/N,N-dimethylacetamide have been studied by conductivity measurements from 65 to 85 A degrees C. We have employed cyclohexylmethanol, CHM, and trans-1,2-cyclohexanediol, CHD, as model compounds for the hydroxyl groups of the anhydroglucose unit of cellulose. The ratios of rate constants of acylation of primary (CHM; Prim-OH) and secondary (CHD; Sec-OH) groups have been employed, after correction, in order to split the overall rate constants of the reaction of MCC into contributions from the discrete OH groups. For the model compounds, we have found that k((Prim-OH))/k((Sec-OH)) > 1, akin to reactions of cellulose under heterogeneous conditions; this ratio increases as a function of increasing Nc. The overall, and partial rate constants of the acylation of MCC decrease from ethanoic- to butanoic-anhydride and then increase for pentanoic- and hexanoic anhydride, due to subtle changes in- and compensations of the enthalpy and entropy of activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion research in steels is one of the areas in which Mossbauer spectroscopy has become a required analytical technique, since it is a powerful tool for both identifying and quantifying distinctive phases (which contain Fe) with accuracy. In this manuscript, this technique was used to the study of corrosion resistance of plasma nitrided AISI 316L samples in the presence of chloride anions. Plasma nitriding has been carried out using dc glow-discharge, nitriding treatments, in medium of 80 vol.% H-2 and 20 vol.% N-2, at 673 K, and at different time intervals: 2, 4, and 7 h. Treated samples were characterized by means of phase composition and morphological analysis, and electrochemical tests in NaCl aerated solution in order to investigate the influence of treatment time on the microstructure and the corrosion resistance, proved by conversion electron Mossbauer spectroscopy (CEMS), glancing angle X-ray diffraction (GAXRD), scanning electron microscopy (SEM) and potentiodynamic polarization. A modified layer of about 8 gin was observed for all the nitrided samples, independently of the nitriding time. A metastable phase, S phase or gamma(N), was produced. It seems to be correlated with gamma`-Fe-4 N phase. If the gamma(N) fraction decreases, the gamma` fraction increases. The gamma(N) magnetic nature was analyzed. When the nitriding time increases, the results indicate that there is a significant reduction in the relative fraction of the magnetic gamma(N) (in) phase. In contrast, the paramagnetic gamma(N) (p) phase increases. The GAXRD analysis confirms the Mossbauer results, and it also indicates CrN traces for the sample nitrided for 7 h. Corrosion results demonstrate that time in the plasma nitriding treatment plays an important role for the corrosion resistance. The sample treated for 4 h showed the best result of corrosion resistance. It seems that the epsilon/gamma` fraction ratio plays an important role in thin corrosion resistance since this sample shows the maximum value for this ratio. (c) 2008 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium of meso-tetrakis(4-N-methylpyridiniumyl)porphyrin (TMPyP) in aqueous solution in the presence of surfactants was studied by optical spectroscopic techniques and SAXS (small angle X-ray scattering). Anionic SDS (sodium dodecyl sulfate), zwitterionic HPS (N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate) and nonionic TRITON X-100 (t-octyl-phenoxypolyethoxyethanol), surfactants were used. TMPyP is characterized by a protonation equilibrium with a pK(a) around 1.0, associated with the diacid-free base transition, and a second pK(a) around 12.0 related with the transition between the free base and the monoanion form. Three independent species were observed for TMPyP at pH 6.0 as a function of SDS concentration: free TMPyP, TMPyP-SDS aggregates and porphyrin monomer bound to micelles. For HPS and TRITON X-100, the equilibrium of TMPyP as a function of pH is quite similar to that obtained in pure aqueous solution: no aggregation was observed, suggesting that electrostatic contribution is the major factor in the interaction between TMPyP and surfactants. SAXS data analysis demonstrated a prolate ellipsoidal shape for SDS micelles; no significant changes in shape and size were observed for SDS-TMPyP co-micelles. Moreover, the ionization coefficient, alpha, decreases with the increase of the porphyrin concentration, suggesting the ""screening"" of the anionic charge of SDS by the cationic porphyrin. These results are consistent with optical absorption, fluorescence and RLS (resonance light scattering) spectroscopies data, allowing to conclude that neutral surfactants present a smaller interaction with the cationic porphyrin as compared with an ionic surfactant. Therefore, the interaction of TMPyP with the ionic and nonionic surfactants is predominantly due to the electrostatic contribution. Copyright (c) 2008 Society of Porphyrins & Phthalocyanines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aliquat 336, a liquid hydrophobic material, was used at different concentrations (0.5-3.0%, w/v) as an additive in the preparation of encapsulated lipase from Bacillus sp. ITP-001 on sol-gel silica matrices using tetraethoxysilane (TEOS) as the precursor. The resulting hydrophobic matrices and immobilized lipases were characterized with regard to specific surface area (BET method), adsorption-desorption isotherms, pore volume (Vp) and size (dp) by nitrogen adsorption (BJH method) and scanning electron microscopy (SEM). The catalytic activities and the corresponding coupling yields were assayed in the hydrolysis of olive oil. In comparison with pure silica matrices, the immobilization process in the presence of Aliquat 336 decreased the values for specific surface area and increased the values for pore specific volume (Vp) and mean pore diameter (dp). This behavior may be related to the partial adsorption of the enzyme on the external surface of the hydrophobic matrix as indicated by scanning electron microscopy. Aliquat 336 concentrations in the range from 0.5 to 1.5% (w/v) provided immobilized derivatives with higher coupling yields and better substrate affinity. The highest coupling yield (Y-A = 71%) was obtained for the immobilized enzyme prepared in the presence of 1.5% Aliquat which gave the following morphological properties: specific surface area = 183 m(2)/g, pore specific volume (Vp) = 0.36 cc/g and mean pore diameter (dp)= 91 angstrom. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this Account is to provide an overview of our current research activities on the design and modification of superparamagnetic nanomaterials for application in the field of magnetic separation and catalysis. First, an introduction of magnetism and magnetic separation is done. Then, the synthetic strategies that have been developed for generating superparamagnetic nanoparticles spherically coated by silica and other oxides, with a focus on well characterized systems prepared by methods that generate samples of high quality and easy to scale- up, are discussed. A set of magnetically recoverable catalysts prepared in our research group by the unique combination of superparamagnetic supports and metal nanoparticles is highlighted. This Account is concluded with personal remarks and perspectives on this research field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supercritical carbon dioxide is a promising green-chemistry solvent for many enzyme-catalyzed chemical reactions, yet the striking stability of some enzymes in such unconventional environments is not well understood. Here, we investigate the stabilization of the Candida antarctica Lipase B (CALB) in supercritical carbon dioxide-water biphasic systems using molecular dynamics simulations. The preservation of the enzyme structure and optimal activity depend on the presence of small amounts of water in the supercritical dispersing medium. When the protein is at least partially hydrated, water molecules bind to specific sites on the enzyme surface and prevent carbon dioxide from penetrating its catalytic core. Strikingly, water and supercritical carbon dioxide cover the protein surface quite heterogeneously. In the first solvation layer, the hydrophilic residues at the surface of the protein are able to pin down patches of water, whereas carbon dioxide solvates preferentially hydrophobic surface residues. In the outer solvation shells, water molecules tend to cluster predominantly on top of the larger water patches of the first solvation layer instead of spreading evenly around the remainder of the protein surface. For CALB, this exposes the substrate-binding region of the enzyme to carbon dioxide, possibly facilitating diffusion of nonpolar substrates into the catalytic funnel. Therefore, by means of microheterogeneous solvation, enhanced accessibility of hydrophobic substrates to the active site can be achieved, while preserving the functional structure of the enzyme. Our results provide a molecular picture on the nature of the stability of proteins in nonaqueous media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and characterization methods of metal nanoparticles (NPs) have advanced greatly in the last few decades, allowing an increasing understanding of structure-property-performance relationships. However, the role played by the ligands used as stabilizers for metal NPs synthesis or for NPs immobilization on solid supports has been underestimated. Here, we highlight some recent progress in the preparation of supported metal NPs with the assistance of ligands in solution or grafted on solid supports, a modified deposition-reduction method, with special attention to the effects on NPs size, metal-support interactions and, more importantly, catalytic activities. After presenting the general strategies in metal NP synthesis assisted by ligands grafted on solid supports, we highlight some recent progress in the deposition of pre-formed colloidal NPs on functionalized solids. Another important aspect that will be reviewed is related to the separation and recovery of NPs. Finally, we will outline our personal understanding and perspectives on the use of supported metal NPs prepared through ligand-assisted methods.