2 resultados para carbonate chemistry

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation and properties of carbonate adducts of some organic hydroxy compounds in aqueous medium were investigated. Fatty alcohols and sugars were chosen as representative classes of biological interest, and the medium was carbonated aqueous solution with pH ranging from 3.0 to 8.3. Capillary electrophoresis with two capacitively coupled contactless conductivity detectors (C4Ds) was used for quantitation and to obtain the mobility of the monoalkyl carbonates (MACs), which were used to determine the equilibrium and kinetic constants of the reaction as well as the diffusion coefficients. For increasing chain length of the alcohols, the equilibrium constant tends to the unit, which suggests that fatty alcohols can form the corresponding MACs. The formation of MACs for cyclohexanol and cyclopentanol also suggest the existence of similar species for sterols. Carbonate adducts of fructose, glucose, and sucrose were also detected, which suggests that these counterparts of the well-known phosphates can also occur in the cytosol. Our calculations suggest that one in 1000 to one in 10 000 molecules of these hydroxy compounds would be available as the corresponding MAC in such a medium. Experiments carried out at pH values less than 3.0 showed that there is a catalytic effect of hydronium on the interconversion of bicarbonate and a MAC. Taking into account the great number of hydroxy compounds similar to the ones investigated and that bicarbonate is ubiquitous in living cells, one can anticipate the existence of a whole new class of carbonate adducts of these metabolites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium carbonate is one of the most important biominerals, and it is the main constituent of pearls, seashells, and teeth. The in vitro crystallization of calcium carbonate using different organic matrices as templates has been reported. In this work, the growth of calcium carbonate thin films on special organic matrices consisting of layer-by-layer (LbL) polyelectrolyte films deposited on a pre-formed phospholipid Langmuir-Blodgett (LB) film has been studied. Two types of randomly coiled polyelectrolytes have been used: lambda-carrageenan and poly(acrylic acid). A precoating comprised of LB films has been prepared by employing a negatively charged phospholipid, the sodium salt of dimyristoilphosphatidyl acid (DMPA), or a zwitterionic phospholipid, namely dimyristoilphosphatidylethanolamine (DMPE). This approach resulted in the formation of particulate calcium carbonate continuous films with different morphologies, particle sizes, and roughness, as revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystalline structure of the calcium carbonate particles was analyzed by Raman spectroscopy. The randomly coiled conformation of the polyelectrolytes seems to be the main reason for the formation of continuous films rather than CaCO3 isolated crystals. (C) 2012 Elsevier B.V. All rights reserved.