10 resultados para brush-border membrane vesicles

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO3- concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 +/- 0.02) and severe (6.95 +/- 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 +/- 0.03) and severe (6.86 +/- 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different types of shed vesicles as, for example, exosomes, plasma-membrane-derived vesicles or microparticles, are the focus of intense research in view of their potential role in cell cell communication and under the perspective that they might be good tools for immunotherapy, vaccination or diagnostic purposes. This review discusses ways employed by pathogenic trypanosomatids to interact with the host by shedding vesicles that contain molecules important for the establishment of infection, as opposed to previous beliefs considering them as a waste of cellular metabolism. Trypanosomatids are compared with Apicomplexa, which circulate parasite antigens bound to vesicles shed by host cells. The knowledge of the origin and chemical composition of these different vesicles might lead to the understanding of the mechanisms that determine their biological function. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzyme activity of protein and carbohydrate degradation in small intestinal mucosa was investigated in goat kids fed with lyophilized bovine and goat colostrum. At 0,7 and 14 h of life 15 male newborns received 5% of body weight of lyophilized bovine colostrum and 14 goat colostrum, both with 55 mg/mL of IgG. Duodenum, jejunum and ileum samples were collected at 18,36 and 96 h of life. Three animals were sampled at birth, without colostrum intake. Activity of aminopeptidase N and A, dipeptidil peptidase IV, lactase, maltase and sucrase was determined as one international unit per gram of tissue. Intracellular enzymatic activity of acid phosphatase was observed by histochemistry in tissue section. Only the activity of aminopeptidase A in the ileum was affected by treatment, with a greater value for LBC than for GC (P < 0.05). The aminopeptidase N activity was the highest at 36 h in the duodenum (P < 0.05) and lowest at 96 h in the jejunum (P < 0.05). Dipeptidil peptidase IV activity was highest at 36 h in the duodenum (P < 0.05), lowest at 96 h in the jejunum (P < 0.05) and higher at 36 h than at 96 h in the ileum (P < 0.05). Aminopeptidase A activity in the ileum was highest at 36 h (P < 0.05), followed by 18 and 96 h of life (P < 0.05). Lactase activity in the duodenum increased from 18 to 36 h and from 36 to 96 h in the jejunum (P < 0.05). Maltase activity increased only in the duodenum from 18 to 96 h (P < 0.05). Sucrase activity in the jejunum decreased from 18 to 36 h and from 36 to 96 h in the ileum (P < 0.05). At birth, activity of most enzymes was similar to that at later times (P < 0.05). Histochemistry analyses showed a higher frequency of lysosomes with acid phosphatase activity in the duodenum, especially at 36 h of life. In the jejunum, the presence of lysosomes with acid phosphatase activity was the highest at 96 h, followed by 36 and 18 h of life. In the ileum, all samples showed low presence of lysosomes with acid phosphatase activity. These results indicate that lyophilized bovine colostrum, as a heterologous source of antibodies or nutrients, is a possible alternative management tool for goats. The present work also suggests that in the first 4 days of life, enzyme activity in the intestinal epithelium of goats is still not fully stimulated, which is an important characteristic for these animals that depend on macromolecule absorption to acquire passive protection after birth. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (zeta-potential) measurements. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We aim in this study to characterize the effect of cations and polycations on the formation of hybrid bilayer membranes (HBMs), especially those that mimic the inner mitochondrial membrane (IMM), with a proper composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cardiolipin (CL) adsorbed on an alkanethiol monolayer. HBMs are versatile membrane mimetics that show promising results in sensor technology. Its formation depends on the fusion of vesicles on hydrophobic surfaces, a process that is not well understood at the molecular level. Our results showed to which extend and in which condition the presence of cations and polycations facilitate the formation of HBMs. The required time for lipid layer formation was reduced several times and the lipid layer reaches the expected thickness of 19.5 +/- 1.8 angstrom, in contrast to only 2 +/- 1.5 angstrom usually observed in the absence of cations. In the presence of specific concentrations of spermine and Ca2+ the amount of adsorbed phospholipids on the thiol layer increased nearly 70% compared to that observed when Na+ was used at concentrations 10 times higher. Divalent cations and polycations adsorb specifically on the lipid headgroups destabilizing the hydration forces, facilitating the process of vesicle fusion and formation of lipid monolayers. The concepts and conditions described in the manuscript will certainly help the development of the field of membrane biosensors. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study shows that MP-1, a peptide from the venom of the Polybia paulista wasp, is more toxic to human leukemic T-lymphocytes than to human primary lymphocytes. By using model membranes and electrophysiology measurements to investigate the molecular mechanisms underlying this selective action, the porelike activity of MP-1 was identified with several bilayer compositions. The highest average conductance was found in bilayers formed by phosphatidylcholine or a mixture of phosphatidylcholine and phosphatidylserine (70:30). The presence of cholesterol or cardiolipin substantially decreases the MP-1 pore activity, suggesting that the membrane fluidity influences the mechanism of selective toxicity. The determination of partition coefficients from the anisotropy of Tip indicated higher coefficients for the anionic bilayers. The partition coefficients were found to be 1 order of magnitude smaller when the bilayers contain cholesterol or a mixture of cholesterol and sphingomyelin. The blue shift fluorescence, anisotropy values, and Stern-Volmer constants are indications of a deeper penetration of MP-1 into anionic bilayers than into zwitterionic bilayers. Our results indicate that MP-1 prefers to target leukemic cell membranes, and its toxicity is probably related to the induction of necrosis and not to DNA fragmentation. This mode of action can be interpreted considering a number of bilayer properties like fluidity, lipid charge, and domain formation. Cholesterol-containing bilayers are less fluid and less charged and have a tendency to form domains. In comparison to healthy cells, leukemic T-lymphocyte membranes are deprived of this lipid, resulting in decreased peptide binding and lower conductance. We showed that the higher content of anionic lipids increases the level of binding of the peptide to bilayers. Additionally, the absence of cholesterol resulted in enhanced pore activity. These findings may drive the selective toxicity of MP-1 to Jurkat cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to analyze the rat temporomandibular joint (TMJ) synovial membrane at different ages using light, scanning, and transmission electron microscopy. Under light microscopic analysis, the TMJ structures were observed such as condyle, capsule, disk, the synovial membrane collagen type, and cells distribution. In the scanning electron microscopy, the synovial membrane surface exhibited a smooth aspect in young animals and there was an increase with ageing in the number of folds. The transmission electron microscopic analysis showed more synoviocytes in the synovial layer in the young group and still a great number of vesicles and cisterns dilation of rough endoplasmic reticulum in the aged group. In the three groups, a dense layer of collagen fibers in the synovial layer and cytoplasmic extensions were clearly seen. It was possible to conclude that synovial membrane structures in aged group showed alterations contributing to the decrease in joint lubrication and in the sliding between disk and joint surfaces. These characteristic will reflect in biomechanics of chewing, and may cause the TMJ disorders, currently observed in clinical processes. Microsc. Res. Tech. (c) 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using giant unilamellar vesicles (GUVs) made from POPC. DPPC, cholesterol and a small amount of a porphyrin-based photosensitizer that we name PE-porph, we investigated the response of the lipid bilayer under visible light, focusing in the formation of domains during the lipid oxidation induced by singlet oxygen. This reactive species is generated by light excitation of PE-porf in the vicinity of the membrane, and thus promotes formation of hydroperoxides when unsaturated lipids and cholesterol are present. Using optical microscopy we determined the lipid compositions under which GUVs initially in the homogeneous phase displayed Lo-Ld phase separation following irradiation. Such an effect is attributed to the in situ formation of both hydroperoxized POPC and cholesterol. The boundary line separating homogeneous Lo phase and phase coexistence regions in the phase diagram is displaced vertically towards the higher cholesterol content in respect to ternary diagram of POPC:DPPC:cholesterol mixtures in the absence of oxidized species. Phase separated domains emerge from sub-micrometer initial sizes to evolve over hours into large Lo-Ld domains completely separated in the lipid membrane. This study provides not only a new tool to explore the kinetics of domain formation in mixtures of lipid membranes, but may also have implications in biological signaling of redox misbalance. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulchellin is a Ribosome Inactivating Protein containing an A-chain (PAC), whose toxic activity requires crossing the endoplasmic reticulum (ER) membrane. In this paper, we investigate the interaction between recombinant PAC (rPAC) and Langmuir monolayers of dipalmitoyl phosphatidyl glycerol (DPPG), which served as membrane model. Three catalytically active, truncated PACs with increasing deletion of the C-terminal region, possessing 244,239 and 236 residues (rPAC(244), rPAC(239) and rPAC(236)), were studied. rPAC had the strongest interaction with the DPPG monolayer, inducing a large expansion in its surface pressure-area isotherm. The affinity to DPPG decreased with increased deletion of the C-terminal region. When the C-terminal region was deleted completely (rPAC(236)), the interaction was recovered, probably because other hydrophobic regions were exposed to the membrane. Using Polarization Modulated-Infrared Reflection Absorption Spectroscopy (PM-IRRAS) we observed that at a bare air/water interface rPAC comprised mainly alpha-helix structures, the C-terminal region had unordered structures when interacting with DPPG. For rPAC(236) the alpha-helices were preserved even in the presence of DPPG. These results confirm the importance of the C-terminal region for PAC-ER membrane interaction. The partial unfolding only with preserved C-terminal appears a key step for the protein to reach the cytosol and develop its toxic activity. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural properties of model membranes, such as lipid vesicles, may be investigated through the addition of fluorescent probes. After incorporation, the fluorescent molecules are excited with linearly polarized light and the fluorescence emission is depolarized due to translational as well as rotational diffusion during the lifetime of the excited state. The monitoring of emitted light is undertaken through the technique of time-resolved fluorescence: the intensity of the emitted light informs on fluorescence decay times, and the decay of the components of the emitted light yield rotational correlation times which inform on the fluidity of the medium. The fluorescent molecule DPH, of uniaxial symmetry, is rather hydrophobic and has collinear transition and emission moments. It has been used frequently as a probe for the monitoring of the fluidity of the lipid bilayer along the phase transition of the chains. The interpretation of experimental data requires models for localization of fluorescent molecules as well as for possible restrictions on their movement. In this study, we develop calculations for two models for uniaxial diffusion of fluorescent molecules, such as DPH, suggested in several articles in the literature. A zeroth order test model consists of a free randomly rotating dipole in a homogeneous solution, and serves as the basis for the study of the diffusion of models in anisotropic media. In the second model, we consider random rotations of emitting dipoles distributed within cones with their axes perpendicular to the vesicle spherical geometry. In the third model, the dipole rotates in the plane of the of bilayer spherical geometry, within a movement that might occur between the monolayers forming the bilayer. For each of the models analysed, two methods are used by us in order to analyse the rotational diffusion: (I) solution of the corresponding rotational diffusion equation for a single molecule, taking into account the boundary conditions imposed by the models, for the probability of the fluorescent molecule to be found with a given configuration at time t. Considering the distribution of molecules in the geometry proposed, we obtain the analytical expression for the fluorescence anisotropy, except for the cone geometry, for which the solution is obtained numerically; (II) numerical simulations of a restricted rotational random walk in the two geometries corresponding to the two models. The latter method may be very useful in the cases of low-symmetry geometries or of composed geometries.