9 resultados para brown trout
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Temporal and spatial fluctuations of environmental parameters are normally assigned as causes of variations in morpho-phenological characters of seaweeds and in their epibionts, but formal tests of such hypotheses are lacking, especially in narrow gradients. The present study evaluated the influence of a very small depth gradient (1 to 3 m) and of subtle seasonality characteristic of tropical areas on morpho-phenological traits and on the occurrence of sessile epiphytic organisms using a controlled orthogonal sampling design in a sublittoral population of the tropical brown alga Sargassum cymosum. Four temporal samples were obtained over a one-year period at three depths using nine replicates. The wet weight, maximum length, number of primary and secondary branches, and proportion of secondary branches with receptacles were recorded. Epibiosis was estimated by visual evaluation of percentage cover on secondary branches. Algal morphology varied as a function of the period of the year (weaker effect) and depth (stronger effect) but in different ways for each variable analysed. In general, fronds tended to be shorter, heavier, and more ramified in shallower areas. In relation to time, the morphological characters tended mostly to present higher values in January (summer) and/or April (autumn). Frequency of receptacles did not depend on algal morphology and depth at all but varied in time, although only in the deepest area. Epibiosis also did not depend on algal morphology but varied in relation to time (stronger effect) and, to a lesser extent, depth (weaker effect). The effect of time upon epibiosis also depended on the biological group analysed. These data support the hypothesis that algal morphology varies in relation to period of the year and depth, even under small temporal and spatial environmenal gradients.
Resumo:
We have previously shown that a high-protein, carbohydrate-free diet can decrease the production of glycerol-3-phosphate (G3P) from glucose and increase glyceroneogenesis in both brown (BAT) and epididymal (EAT) adipose tissue. Here, we utilized an in-vivo approach to examine the hypothesis that there is reciprocal regulation in the G3P synthesis from glucose (via glycolysis) and glyceroneogenesis in BAT, EAT and liver of fasted rats and cafeteria diet-fed rats. Glyceroneogenesis played a prominent role in the generation of G3P in the liver (similar to 70 %) as well as in BAT and EAT (similar to 80 %) in controls rats. The cafeteria diet induced an increase in the total glyceride-glycerol synthesis and G3P synthesis from glucose and a decrease in glyceroneogenesis in BAT; this diet did not affect either the total glyceride-glycerol synthesis or G3P generation from glyceroneogenesis or glycolysis in the liver or EAT. Fasting induced an increase in total glyceride-glycerol synthesis and glyceroneogenesis and a decrease in G3P synthesis from glucose in the liver but did not affect either the total glyceride-glycerol synthesis or G3P synthesis from glyceroneogenesis in BAT and EAT, despite a reduction in glycolysis in these tissues. These data demonstrate that reciprocal changes in the G3P generation from glucose and from glyceroneogenesis in the rat liver and BAT occur only when the synthesis of glycerides-glycerol is increased. Further, our data suggest that this increase may be essential for the systemic recycling of fatty acids by the liver from fasted rats and for the maintenance of the thermogenic capacity of BAT from cafeteria diet-fed rats.
Resumo:
With the objective to establish the best metabolizable energy (ME) intake for layers, and the best dietary vegetable oil addition level to optimize egg production, an experiment was carried out with 432 30-week-old Hisex Brown layers. Birds were distributed into nine treatments with six replicates of eight birds each according to a 3 x 3 factorial arrangement, consisting of three daily metabolizable energy intake (280, 300 or 320 kcal/bird/day) and three oil levels (0.00; 0.75 and 1.50 g/bird/day). Daily feed intake was limited to 115, 110 and 105 g/bird in order to obtain the desired energy and oil intake in each treatment. The following parameters were evaluated: initial weight, final weight, body weight change, egg production, egg mass, feed conversion ratio per dozen eggs and per egg mass and energy conversion. There was no influence of the treatments on egg production (%) or egg mass (g/bird/day). Final weight and body weight change were significantly affected by increasing energy intake. Feed conversion ratio per egg mass, feed conversion ratio per dozen eggs and energy conversion significantly worsened as a function of the increase in daily energy intake. An energy intake of 280 kcal/bird/day with no addition of dietary oil does not affect layer performance.
Resumo:
Festuccia WT, Blanchard PG, Oliveira TB, Magdalon J, Paschoal VA, Richard D, Deshaies Y. PPAR gamma activation attenuates cold-induced upregulation of thyroid status and brown adipose tissue PGC-1 alpha and D2. Am J Physiol Regul Integr Comp Physiol 303: R1277-R1285, 2012. First published October 24, 2012; doi:10.1152/ajpregu.00299.2012.-Here, we investigated whether pharmacological PPAR gamma activation modulates key early events in brown adipose tissue (BAT) recruitment induced by acute cold exposure with the aim of unraveling the interrelationships between sympathetic and PPAR gamma signaling. Sprague-Dawley rats treated or not with the PPAR gamma ligand rosiglitazone (15 mg.kg(-1).day(-1), 7 days) were kept at 23 degrees C or exposed to cold (5 degrees C) for 24 h and evaluated for BAT gene expression, sympathetic activity, thyroid status, and adrenergic signaling. Rosiglitazone did not affect the reduction in body weight gain and the increase in feed efficiency, VO2, and BAT sympathetic activity induced by 24-h cold exposure. Rosiglitazone strongly attenuated the increase in serum total and free T4 and T3 levels and BAT iodothyronine deiodinase type 2 (D2) and PGC-1 alpha mRNA levels and potentiated the reduction in BAT thyroid hormone receptor (THR) beta mRNA levels induced by cold. Administration of T3 to rosiglitazone-treated rats exacerbated the cold-induced increase in energy expenditure but did not restore a proper activation of D2 and PGC-1 alpha, nor further increased uncoupling protein 1 expression. Regarding adrenergic signaling, rosiglitazone did not affect the changes in BAT cAMP content and PKA activity induced by cold. Rosiglitazone alone or in combination with cold increased CREB binding to DNA, but it markedly reduced the expression of one of its major coactivators, CREB binding protein. In conclusion, pharmacological PPAR gamma activation impairs short-term cold elicitation of BAT adrenergic and thyroid signaling, which may result in abnormal tissue recruitment and thermogenic activity.
Resumo:
Rainbow trout Oncorhynchus mykiss triploids are regularly produced in fish farms to improve growth because the triploid females do not develop ovaries during the reproductive cycle. In this study, the tissue fatty acid allocations in triploid and diploid females were compared during the reproductive cycle to determine whether the ploidy influences the fatty acid profile of fish produced in aquaculture. The ovaries, liver, and white muscle fatty acid contents of diploid and triploid females were analyzed during the reproductive cycle. Diploid females tend to accumulate more polyunsaturated fatty acids than triploids during some phases of the reproductive cycle, and this profile was compensated by an increase in saturated and monounsaturated fatty acids in triploid females. Arachidonic acid (C20:4n6) was the main n6 polyunsaturated fatty acid in the ovaries of diploid females during the most advanced phases of the reproductive cycle, and docosahexaenoic acid (C22:6n3) was the main n3 polyunsaturated fatty acid. In triploid females, the percentage of both of these polyunsaturated fatty acids was lower than in diploid females during the most advanced phases of the reproductive cycle. In general, the lack of ovary development altered the hepatic synthesis of some fatty acids, mainly monounsaturated and polyunsaturated fatty acids, decreasing the content of the main fatty acids in the white muscle and, consequently, the mobilization of these specific fatty acids to the ovaries.
Resumo:
A previous study from our laboratory showed that maternal food restriction (MFR) delays thermoregulation in newborn rats. In neonates brown adipose tissue (BAT) is essential for thermogenesis due to the presence of uncoupling proteins (UCPs). The aim of this study was to evaluate the influence of MFR on the UCPs mRNA and protein expression in BAT and skeletal muscle (SM) of the newborn rat. Female Wistar EPM-1 control rats (CON) received chow ad libitum during pregnancy, whereas food-restricted dams (RES) received 50% of the amount ingested by CON. Fifteen hours after birth, the litters were weighed and sacrificed. Blood was collected for hormonal analysis. BAT and SM were used for determination of UCPs mRNA and protein expression, and Ca2+-ATPase sarcoplasmic reticulum (SERCA1). RES pups showed a significant reduction in body weight and fat content at birth. MFR caused a significant increase in the expression of UCP1 and UCP2 in BAT, without changes in UCP3 and SERCA1 expression in BAT and SM. No differences between groups were found for leptin, T4 and glucose levels. RES pups showed increased insulin and decreased T3 levels. The delay in development of thermoregulation previously described in RES animals appears not to result from impairment in thermogenesis, but from an increase in heat loss, since MFR caused low birth weight in pups, leading to greater surface/volume ratio. The higher expression of UCP1 and UCP2 in BAT suggests a compensatory mechanism to increased thermogenesis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The composition and seasonal variation of brachyuran and anomuran species associated with mussel farms were evaluated at Praia da Cocanha, Sao Paulo between May 2007 and February 2008. Nine mussel ropes were sampled at random in each quarter, and 1,208 organisms were identified, comprising five families and 28 species. The most numerous species was the porcellanid Pachycheles laevidactylus (18.5%), followed by the xanthids Acantholobulus schmitti (16.6%), Hexapanopeus paulensis (11.3%), Panopeus americanus (10.2%), and Menippe nodifrons (8.4%). The exotic crab Charybdis hellerii was recorded throughout the study period. The ecological descriptors, except Pielou evenness index, varied significantly over the time. The highest abundance and diversity of the species were recorded during November and February. This pattern was reversed for Berger-Parker dominance, with the lowest values recorded in February. The development of epifauna was correlated with the different stages of the mussel farms, since the mean size of mussels and consequently the abundance of epibiotic organisms and the structural complexity on the mussel ropes increased from May (seeding) until February (harvest). Despite this, the temporal population variations in recruitment patterns of the different epibionts should not be overlooked. The results indicated that the mussel farms provided favorable conditions for the development of these crustacean groups, which could be used in environmental monitoring programs and / or be exploited for the aquarium trade.
Resumo:
In mammalian species, profibrogenic cells are activated to become myofibroblasts in response to liver damage. Few studies have examined hepatic myofibroblasts and their role in liver damage in teleosts. The aim of the present study was to investigate the involvement of myofibroblast-like cells in rainbow trout (Oncorhynchus mykiss) with hepatic damage induced by aflatoxin B1 (AFB1). Histopathological and immunohistochemical analyses characterized alterations in the liver stroma during the carcinogenic process. Anti-human a-smoothmuscle actin (SMA) and anti-human desmin primary antibodies were used in immunohistochemistry. Only the anti-SMA reagent labelled cells in trout liver. In the livers of control fish, only smooth muscle in blood vessels and around bile ducts was labelled. In the livers from AFB1-treated fish, SMA-positive cells were present in the stroma surrounding neoplastic lesions and in areas of desmoplastic reaction. These observations indicate that in teleosts, as in mammals, the myofibroblast-like cell is involved in fibrosis associated with liver injury. Chronic liver injury induced in trout by aflatoxin may provide a useful model system for study of the evolution of such mechanisms.
Resumo:
The composition and seasonal variation of brachyuran and anomuran species associated with mussel farms were evaluated at Praia da Cocanha, São Paulo between May 2007 and February 2008. Nine mussel ropes were sampled at random in each quarter, and 1,208 organisms were identified, comprising five families and 28 species. The most numerous species was the porcellanid Pachycheles laevidactylus (18.5%), followed by the xanthids Acantholobulus schmitti (16.6%), Hexapanopeus paulensis (11.3%), Panopeus americanus (10.2%), and Menippe nodifrons (8.4%). The exotic crab Charybdis hellerii was recorded throughout the study period. The ecological descriptors, except Pielou evenness index, varied significantly over the time. The highest abundance and diversity of the species were recorded during November and February. This pattern was reversed for Berger-Parker dominance, with the lowest values recorded in February. The development of epifauna was correlated with the different stages of the mussel farms, since the mean size of mussels and consequently the abundance of epibiotic organisms and the structural complexity on the mussel ropes increased from May (seeding) until February (harvest). Despite this, the temporal population variations in recruitment patterns of the different epibionts should not be overlooked. The results indicated that the mussel farms provided favorable conditions for the development of these crustacean groups, which could be used in environmental monitoring programs and / or be exploited for the aquarium trade.