23 resultados para brain activity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Despite new brain imaging techniques that have improved the study of the underlying processes of human decision-making, to the best of our knowledge, there have been very few studies that have attempted to investigate brain activity during medical diagnostic processing. We investigated brain electroencephalography (EEG) activity associated with diagnostic decision-making in the realm of veterinary medicine using X-rays as a fundamental auxiliary test. EEG signals were analysed using Principal Components (PCA) and Logistic Regression Analysis Results The principal component analysis revealed three patterns that accounted for 85% of the total variance in the EEG activity recorded while veterinary doctors read a clinical history, examined an X-ray image pertinent to a medical case, and selected among alternative diagnostic hypotheses. Two of these patterns are proposed to be associated with visual processing and the executive control of the task. The other two patterns are proposed to be related to the reasoning process that occurs during diagnostic decision-making. Conclusions PCA analysis was successful in disclosing the different patterns of brain activity associated with hypothesis triggering and handling (pattern P1); identification uncertainty and prevalence assessment (pattern P3), and hypothesis plausibility calculation (pattern P2); Logistic regression analysis was successful in disclosing the brain activity associated with clinical reasoning success, and together with regression analysis showed that clinical practice reorganizes the neural circuits supporting clinical reasoning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper aims to discuss and test the hypothesis raised by Fusar-Poli [Fusar-Poli P. Can neuroimaging prove that schizophrenia is a brain disease? A radical hypothesis. Medical Hypotheses in press, corrected proof] that ""on the basis of the available imaging literature there is no consistent evidence to reject the radical and provocative hypothesis that schizophrenia is not a brain disease"". To achieve this goal, all meta-analyses on `fMRI and schizophrenia` published during the current decade and indexed in Pubmed were summarized, as much as some other useful information, e.g., meta-analyses on genetic risk factors. Our main conclusion is that the literature fully supports the hypothesis that schizophrenia is a syndrome (not a disease) associated with brain abnormalities, despite the fact that there is no singular and reductionist pathway from the nosographic entity (schizophrenia) to its causes. This irreducibility is due to the fact that the syndrome has more than one dimension (e.g., cognitive, psychotic and negative) and each of them is related to abnormalities in specific neuronal networks. A psychiatric diagnosis is a statistical procedure; these dimensions are not identically represented in each diagnosticated case and this explains the existence of more than one pattern of brain abnormalities related to schizophrenia. For example, chronification is associated with negativism while the first psychotic episode is not; in that sense, the same person living with schizophrenia may reveal different symptoms and fMRI patterns along the course of his life, and this is precisely what defines schizophrenia since the time when it was called Dementia Praecox (first by pick then by Kraepelin). It is notable that 100% of the collected meta-analyses on `fMRI and schizophrenia` reveal positive findings. Moreover, all meta-analyses that found positive associations between schizophrenia and genetic risk factors have to do with genes (SNPs) especially activated in neuronal tissue of the central nervous system (CNS), suggesting that, to the extent these polymorphisms are related to schizophrenia`s etiology, they are also related to abnormal brain activity. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) is a novel technique of non-invasive brain stimulation which has been used to treat several neuropsychiatric disorders such as major depressive disorder, chronic pain and epilepsy. Recent studies have shown that the therapeutic effects of rTMS are associated with plastic changes in local and distant neural networks. In fact, it has been suggested that rTMS induces long-term potentiation (LTP) and long-term depression (LTD) - like effects. Besides the initial positive clinical results; the effects of rTMS are stilt mixed. Therefore new toots to assess the effects of plasticity non-invasively might be useful to predict its therapeutic effects and design novel therapeutic approaches using rTMS. In this paper we propose that brain-derived neurotrophic factor (BDNF) might be such a tool. Brain-derived neurotrophic factor is a neurotrophin that plays a key role in neuronal survival and synaptic strength, which has also been studied in several neuropsychiatric disorders. There is robust evidence associating BDNF with the LTP/LTD processes, and indeed it has been proposed that BNDF might index an increase or decrease of brain activity - the `yin and yang` BDNF hypothesis. In this article, we review the initial studies combining measurements of BDNF in rTMS clinical trials and discuss the results and potential usefulness of this instrument in the field of rTMS. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The saccadic paradigm has been used to investigate specific cortical networks involving visuospatial attention. We examined whether asymmetry in theta and beta band differentiates the role of the hemispheres during the execution of two different prosacadic conditions: a fixed condition, where the stimulus was presented at the same location; and a random condition, where the stimulus was unpredictable. Twelve healthy volunteers (3 male; mean age: 26.25) performed the task while their brain activity pattern was recorded using quantitative electroencephalography. We did not find any significant difference for beta, slow- and fast-alpha frequencies for the pairs of electrodes analyzed. The results for theta band showed a superiority of the left hemisphere in the frontal region when responding to the random condition on the right, which is related to the planning and selection of responses, and also a greater activation of the right hemisphere during the random condition, in the occipital region, related to the identification and recognition of patterns. These results indicate that asymmetries in the premotor area and the occipital cortex differentiate memory- and stimulus-driven tasks. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During exercise, intense brain activity orchestrates an increase in muscle tension. Additionally, there is an increase in cardiac output and ventilation to compensate the increased metabolic demand of muscle activity and to facilitate the removal of CO2 from and the delivery of O-2 to tissues. Here we tested the hypothesis that a subset of pontomedullary and hypothalamic neurons could be activated during dynamic acute exercise. Male Wistar rats (250-350 g) were divided into an exercise group (n = 12) that ran on a treadmill and a no-exercise group (n = 7). Immunohistochemistry of pontomedullary and hypothalamic sections to identify activation (c-Fos expression) of cardiorespiratory areas showed that the no-exercise rats exhibited minimal Fos expression. In contrast, there was intense activation of the nucleus of the solitary tract, the ventrolateral medulla (including the presumed central chemoreceptor neurons in the retrotrapezoid/parafacial region), the lateral parabrachial nucleus, the Kolliker-Fuse region, the perifornical region, which includes the perifornical area and the lateral hypothalamus, the dorsal medial hypothalamus, and the paraventricular nucleus of the hypothalamus after running exercise. Additionally, we observed Fos immunoreactivity in catecholaminergic neurons within the ventrolateral medulla (C1 region) without Fos expression in the A2, A5 and A7 neurons. In summary, we show for the first time that after acute exercise there is an intense activation of brain areas crucial for cardiorespiratory control. Possible involvement of the central command mechanism should be considered. Our results suggest whole brain-specific mobilization to correct and compensate the homeostatic changes produced by acute exercise. (c) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurofeedback (NF) is a training to enhance self-regulatory capacity over brain activity patterns and consequently over brain mental states. Recent findings suggest that NF is a promising alternative for the treatment of attention-deficit/hyperactivity disorder (ADHD). We comprehensively reviewed literature searching for studies on the effectiveness and specificity of NF for the treatment of ADHD. In addition, clinically informative evidence-based data are discussed. We found 3 systematic review on the use of NF for ADHD and 6 randomized controlled trials that have not been included in these reviews. Most nonrandomized controlled trials found positive results with medium-to-large effect sizes, but the evidence for effectiveness are less robust when only randomized controlled studies are considered. The direct comparison of NF and sham-NF in 3 published studies have found no group differences, nevertheless methodological caveats, such as the quality of the training protocol used, sample size, and sample selection may have contributed to the negative results. Further data on specificity comes from electrophysiological studies reporting that NF effectively changes brain activity patterns. No safety issues have emerged from clinical trials and NF seems to be well tolerated and accepted. Follow-up studies support long-term effects of NF. Currently there is no available data to guide clinicians on the predictors of response to NF and on optimal treatment protocol. In conclusion, NF is a valid option for the treatment for ADHD, but further evidence is required to guide its use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Correlations between GABA(A) receptor (GABA(A)-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with beta-cyclodextrin (beta-CD). The mere pre-incubation (PI) at 37A degrees C accompanying the beta-CD treatment was an underlying source of perturbations increasing [H-3]-FNZ maximal binding (70%) and K (d) (38%), plus a stiffening of SMs' hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A (DPH)) in SMs submitted to a heating-cooling cycle (4-37-4A degrees C) with A (DPH,heating) < A (DPH,cooling). Compared with PI samples, the beta-CD treatment reduced B (max) by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A (TMA-DPH). PI, but not beta-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with beta-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, beta-CD is not completely eliminated from the system through centrifugation washings. It was concluded that beta-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual beta-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABA(A)-R density, relative to untreated samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genus Eremanthus is recognized by the predominance of sesquiterpene lactones from the furanoheliangolide type, a class of substances extensively tested against cancer cell lines. Thus, the species E. crotonoides (DC.) Sch. Bip., Asteraceae, obtained on "restinga" vegetation was evaluated against U251 and U87-MG glioma cell lines using the MTT colorimetric assay. Dichloromethane fraction was cytotoxic to both glioblastoma multiforme cell lines. We then conducted UPLC-PDA-ESI-MS/MS analysis of the dichloromethane fraction, which allowed the identification of the sesquiterpene lactones centratherin and goyazensolide. The isolation of centratherin was performed using chromatographic techniques and the identification of this substance was confirmed according to NMR data. Cytotoxic activity of centratherin alone was also evaluated against both U251 and U87-MG cells, which showed IC50 values comparable with those obtained for the commercial anticancer drug doxorubicin. All the tested samples showed cytotoxic activity against glioblastoma multiforme cells which suggests that E. crotonoides extracts may be important sources of antiproliferative substances and that the centratherin may serve as prototype for developing new antiglioblastoma drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although several surveys have been conducted around the world, few surveys have investigated the prevalence of dementia in Latin America. The aim of this study was to estimate dementia prevalence in a community sample in Ribeirao Preto, Brazil, and to evaluate its distribution across several socio-demographic and clinical characteristics and habits. The population was aged 60 years and older and a representative sample from three different social regions. The screening instruments used in the first phase were the Mini-Mental State Examination, the Fuld Object-Memory Evaluation, the Informant Questionnaire on Cognitive Decline in the Elderly, and the Bayer Activities of Daily Living Scale. In the second phase, the Cambridge Examination was employed to diagnose dementia according to the DSM-IV criteria. The estimate of dementia prevalence was adjusted for screening instrument performance, using the positive and negative predictive values. The data were weighted to compare frequencies, considering the sampling and the non-response effect, and subjected to multivariate analysis. In all, 1.145 elderly subjects were evaluated (mean age: 70.9 years), of whom 63.4% were female and 52.8% had up to 4 years of schooling (participation rates at the first and the second phases were 62.6 and 60%, respectively). The observed and estimated prevalences of dementia were 5.9% and 12.5%, respectively (n = 68). Alzheimer's disease was the main cause (60.3%). Dementia was associated with old age, low education, stroke, absence of arthritis, and not reading books. The estimated prevalence of dementia was higher than the prevalence previously found. Associated factors confirmed the importance of intellectual activities in prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferreira-Junior NC, Fedoce AG, Alves FHF, Correa FMA, Resstel LBM. Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB1 receptors. Am J Physiol Regul Integr Comp Physiol 302: R876-R885, 2012. First published December 28, 2011; doi: 10.1152/ajpregu.00330.2011.-Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481-488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB1 receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB1 receptors modulate baroreflex activity. We found that bilateral microinjection of the CB1 receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB1 receptors, which modulate local glutamate release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies indicate that thimet oligopeptidase (EC3.4.24.15; TOP) can be implicated in the metabolism of bioactive peptides, including dynorphin 1-8, alpha-neoendorphin, beta-neoendorphin and GnRH. Furthermore, the higher levels of this peptidase are found in neuroendocrine tissue and testis. In the present study, we have evaluated the effect of acute cocaine administration in male rats on TOP specific activity and mRNA levels in prosencephalic brain areas related with the reward circuitry; ventral striatum, hippocampus, and frontal cortex. No significant differences on TOP specific activity were detected in the hippocampus and frontal cortex of cocaine treated animals compared to control vehicle group. However, a significant increase in activity was observed in the ventral striatum of cocaine treated-rats. The increase occurred in both, TOP specific activity and TOP relative mRNA amount determined by real time RT-PCR. As TOP can be implicated in the processing of many neuropeptides, and previous studies have shown that cocaine also alters the gene expression of proenkephalin and prodynorphin in the striatum, the present findings suggest that TOP changes in the brain could play important role in the balance of neuropeptide level correlated with cocaine effects. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diffusible messenger NO plays multiple roles in neuroprotection, neurodegeneration, and brain plasticity. Argininosuccinate synthase (AS) is a ubiquitous enzyme in mammals and the key enzyme of the NO-citrulline cycle, because it provides the substrate L-arginine for subsequent NO synthesis by inducible, endothelial, and neuronal NO synthase (NOS). Here, we provide evidence for the participation of AS and of the NO-citrulline cycle in the progress of differentiation of neural stem cells (NSC) into neurons, astrocytes, and oligodendrocytes. AS expression and activity and neuronal NOS expression, as well as L-arginine and NOx production, increased along neural differentiation, whereas endothelial NOS expression was augmented in conditions of chronic NOS inhibition during differentiation, indicating that this NOS isoform is amenable to modulation by extracellular cues. AS and NOS inhibition caused a delay in the progress of neural differentiation, as suggested by the decreased percentage of terminally differentiated cells. On the other hand, BDNF reversed the delay of neural differentiation of NSC caused by inhibition of NOx production. Alikely cause is the lack of NO, which up-regulated p75 neurotrophin receptor expression, a receptor required for BDNF-induced differentiation of NSC. We conclude that the NO-citrulline cycle acts together with BDNF for maintaining the progress of neural differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms responsible for containing activity in systems represented by networks are crucial in various phenomena, for example, in diseases such as epilepsy that affect the neuronal networks and for information dissemination in social networks. The first models to account for contained activity included triggering and inhibition processes, but they cannot be applied to social networks where inhibition is clearly absent. A recent model showed that contained activity can be achieved with no need of inhibition processes provided that the network is subdivided into modules (communities). In this paper, we introduce a new concept inspired in the Hebbian theory, through which containment of activity is achieved by incorporating a dynamics based on a decaying activity in a random walk mechanism preferential to the node activity. Upon selecting the decay coefficient within a proper range, we observed sustained activity in all the networks tested, namely, random, Barabasi-Albert and geographical networks. The generality of this finding was confirmed by showing that modularity is no longer needed if the dynamics based on the integrate-and-fire dynamics incorporated the decay factor. Taken together, these results provide a proof of principle that persistent, restrained network activation might occur in the absence of any particular topological structure. This may be the reason why neuronal activity does not spread out to the entire neuronal network, even when no special topological organization exists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Aims: Oxidative stress plays a central role in Alzheimer's disease (AD). Pro198Leu cytosolic glutathione peroxidase (GPx1) polymorphism seems to be associated with a lower activity of this enzyme, but there are no studies with AD patients. Thus, the aim was to determine the frequency of the GPx1 Pro198Leu polymorphism in AD patients and to verify its relation to glutathione peroxidase (GPx) activity and selenium (Se) status. Methods:The study was carried out in a group of AD elderly (n = 28) compared to a control group (n = 29). Blood Se concentrations were measured through hydride generation atomic absorption spectroscopy. GPx activity was determined using a commercial kit, and the polymorphism using amplified DNA sequencing. Results:The distribution of genotypes was not different between groups. The variant allele frequency was 0.179 (AD group) and 0.207 (control group). Although no differences regarding GPx activity were found between individuals with different genotypes, lower blood Se levels were found in Pro/Pro AD patients compared to Pro/Pro control subjects, which was not found in the Pro/Leu groups. Moreover, the association between the erythrocyte Se concentration and GPx activity was affected by the Pro198Leu genotype. Conclusions: Results indicate that this polymorphism had apparently affected Se status in AD patients and that more studies in this field are necessary. Copyright (c) 2012 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental tobacco smoke (ETS) leads to the death of 600,000 nonsmokers annually and is associated with disturbances in antioxidant enzyme capacity in the adult rodent brain. However, little is known regarding the influence of ETS on brain development. The aim of this study was to determine levels of malonaldehyde (MDA) and 3-nitrotyrosine (3-NT), as well as enzymatic antioxidant activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and superoxide dismutase (SOD), in distinct brain structures. BALB/c mice were exposed to ETS twice daily for 1 h from postnatal day 5 through postnatal day 18. Acute exposure was performed for 1 h on postnatal day 18. Mice were euthanized either immediately (0) or 3 h after the last exposure. Immediately after an acute exposure there were higher GR and GST activities and MDA levels in the hippocampus, higher GPx and SOD activities in the prefrontal cortex, and higher GST activity and MDA levels in the striatum and cerebellum. Three hours later there was an increase in SOD activity and MDA levels in the hippocampus and a decrease in the activity of all enzymes in the prefrontal cortex. Immediately after final repeated exposure there were elevated levels of GST and GR activity and decreased GPx activity in the hippocampus. Moreover, a rise was found in GPx and GST activities in the prefrontal cortex and increased GST and GPx activity in the striatum and cerebellum, respectively. After 3 h the prefrontal cortex showed elevated GR and GST activities, and the striatum displayed enhanced GST activity. Data showed that enzymatic antioxidant system in the central nervous system responds to ETS differently in different regions of the brain and that a form of adaptation occurs after several days of exposure.