8 resultados para biophysical throughput

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High intake of saturated fat from meats has been associated with cardiovascular disease, cancer, diabetes, and others diseases. In this paper, we are introducing a simple, high-throughput, and non-destructive low-resolution nuclear magnetic resonance method that has the potential to analyze the intramuscular fat content (IMF) in more than 1,000 beef portions per hour. The results can be used in nutritional fact labels, replacing the currently used average value. The method is based on longitudinal (T(1)) and transverse (T(2)) relaxation time information obtained by a continuous wave-free precession (CWFP) sequence. CWFP yields a higher correlation coefficient (r=0.9) than the conventional Carr-Purcell-Meiboom- Gill (CPMG) method (r=-0.25) for IMF in beef and is just as fast and a simpler pulse sequence than CPMG. The method can also be applied to other meat products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To investigate the potential of an active attachment biofilm model as a highthroughput demineralization biofilm model for the evaluation of caries-preventive agents. Methods: Streptococcus mutans UA159 biofilms were grown on bovine dentine discs in a highthroughput active attachment model. Biofilms were first formed in a medium with high buffer capacity for 24 h and then subjected to various photodynamic therapies (PACT) using the combination of Light Emitting Diodes (LEDs, Biotable (R)) and Photogem (R). Viability of the biofilms was evaluated by plate counts. To investigate treatment effects on dentine lesion formation, the treated biofilms were grown in a medium with low buffer capacity for an additional 24 h. Integrated mineral loss (IML) and lesion depth (LD) were assessed by transversal microradiography. Calcium release in the biofilm medium was measured by atomic absorption spectroscopy. Results: Compared to the water treated control group, significant reduction in viability of S. mutans biofilms was observed when the combination of LEDs and Photogem (R) was applied. LEDs or Photogem (R) only did not result in biofilm viability changes. Similar outcomes were also found for dentine lesion formation. Significant lower IML and LD values were only found in the group subjected to the combined treatment of LEDs and Photogem (R). There was a good correlation between the calcium release data and the IML or LD values. Conclusions: The high-throughput active attachment biofilm model is applicable for evaluating novel caries-preventive agents on both biofilm and demineralization inhibition. PACT had a killing effect on 24 h S. mutans biofilms and could inhibit the demineralization process. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results: The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions: This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientists predict that global agricultural lands will expand over the next few decades due to increasing demands for food production and an exponential increase in crop-based biofuel production. These changes in land use will greatly impact biogeochemical and biogeophysical cycles across the globe. It is therefore important to develop models that can accurately simulate the interactions between the atmosphere and important crops. In this study, we develop and validate a new process-based sugarcane model (included as a module within the Agro-IBIS dynamic agro-ecosystem model) which can be applied at multiple spatial scales. At site level, the model systematically under/overestimated the daily sensible/latent heat flux (by -10.5% and 14.8%, H and E, respectively) when compared against the micrometeorological observations from southeast Brazil. The model underestimated ET (relative bias between -10.1% and 12.5%) when compared against an agro-meteorological field experiment from northeast Australia. At the regional level, the model accurately simulated average yield for the four largest mesoregions (clusters of municipalities) in the state of Sao Paulo, Brazil, over a period of 16 years, with a yield relative bias of -0.68% to 1.08%. Finally, the simulated annual average sugarcane yield over 31 years for the state of Louisiana (US) had a low relative bias (-2.67%), but exhibited a lower interannual variability than the observed yields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal translocations require formation and joining of DNA double strand breaks (DSBs). These events disrupt the integrity of the genome and are involved in producing leukemias, lymphomas and sarcomas. Translocations are frequent, clonal and recurrent in mature B cell lymphomas, which bear a particularly high DNA damage burden by virtue of activation-induced cytidine deaminase (AID) expression. Despite the ubiquity of genomic rearrangements, the forces that underlie their genesis are not well understood. Here, we provide a detailed description of a new method for studying these events, translocation capture sequencing (TC-Seq). TC-Seq provides the means to document chromosomal rearrangements genome-wide in primary cells, and to discover recombination hotspots. Demonstrating its effectiveness, we successfully estimate the frequency of c-myc/IgH translocations in primary B cells, and identify hotspots of AID-mediated recombination. Furthermore. TC-Seq can be adapted to generate genome-wide rearrangement maps in any cell type and under any condition. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently high spectral resolution sensors have been developed, which allow new and more advanced applications in agriculture. Motivated by the increasing importance of hyperspectral remote sensing data, the need for research is important to define optimal wavebands to estimate biophysical parameters of crop. The use of narrow band vegetation indices (VI) derived from hyperspectral measurements acquired by a field spectrometer was evaluated to estimate bean (Phaseolus vulgaris L.) grain yield, plant height and leaf area index (LAI). Field canopy reflectance measurements were acquired at six bean growth stages over 48 plots with four water levels (179.5; 256.5; 357.5 and 406.2 mm) and tree nitrogen rates (0; 80 and 160 kg ha-1) and four replicates. The following VI was analyzed: OSNBR (optimum simple narrow-band reflectivity); NB_NDVI (narrow-band normalized difference vegetation index) and NDVI (normalized difference index). The vegetation indices investigated (OSNBR, NB_NDVI and NDVI) were efficient to estimate LAI, plant height and grain yield. During all crop development, the best correlations between biophysical variables and spectral variables were observed on V4 (the third trifoliolate leaves were unfolded in 50 % of plants) and R6 (plants developed first flowers in 50 % of plants) stages, according to the variable analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rising of cold water from deeper levels characterizes coastal upwelling systems. This flow makes nutrients available in the euphotic layer, which enhances phytoplankton production and growth. On the Brazilian coast, upwelling is most intense in the Cabo Frio region (RJ). The basic knowledge of this system was reviewed in accordance with concepts of biophysical interactions. The high frequency and amplitude of the prevailing winds are the main factor promoting the rise of South Atlantic Central Water, but meanders and eddies in the Brazil Current as well as local topography and coast line are also important. Upwelling events are common during spring/summer seasons. Primary biomass is exported by virtue of the water circulation and is also controlled by rapid zooplankton predation. Small pelagic fish regulate plankton growth and in their turn are preyed on by predatory fish. Sardine furnishes an important regional fish stock. Shoreline irregularities define the embayment formation of the Marine Extractive Reserve of Arraial do Cabo making it an area with evident different intensities of upwelled water that harbors high species diversity. Consequently, on a small spatial scale there are environments with tropical and subtropical features, a point to be explored as a particularity of this ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background The implication of post-transcriptional regulation by microRNAs in molecular mechanisms underlying cancer disease is well documented. However, their interference at the cellular level is not fully explored. Functional in vitro studies are fundamental for the comprehension of their role; nevertheless results are highly dependable on the adopted cellular model. Next generation small RNA transcriptomic sequencing data of a tumor cell line and keratinocytes derived from primary culture was generated in order to characterize the microRNA content of these systems, thus helping in their understanding. Both constitute cell models for functional studies of microRNAs in head and neck squamous cell carcinoma (HNSCC), a smoking-related cancer. Known microRNAs were quantified and analyzed in the context of gene regulation. New microRNAs were investigated using similarity and structural search, ab initio classification, and prediction of the location of mature microRNAs within would-be precursor sequences. Results were compared with small RNA transcriptomic sequences from HNSCC samples in order to access the applicability of these cell models for cancer phenotype comprehension and for novel molecule discovery. Results Ten miRNAs represented over 70% of the mature molecules present in each of the cell types. The most expressed molecules were miR-21, miR-24 and miR-205, Accordingly; miR-21 and miR-205 have been previously shown to play a role in epithelial cell biology. Although miR-21 has been implicated in cancer development, and evaluated as a biomarker in HNSCC progression, no significant expression differences were seen between cell types. We demonstrate that differentially expressed mature miRNAs target cell differentiation and apoptosis related biological processes, indicating that they might represent, with acceptable accuracy, the genetic context from which they derive. Most miRNAs identified in the cancer cell line and in keratinocytes were present in tumor samples and cancer-free samples, respectively, with miR-21, miR-24 and miR-205 still among the most prevalent molecules at all instances. Thirteen miRNA-like structures, containing reads identified by the deep sequencing, were predicted from putative miRNA precursor sequences. Strong evidences suggest that one of them could be a new miRNA. This molecule was mostly expressed in the tumor cell line and HNSCC samples indicating a possible biological function in cancer. Conclusions Critical biological features of cells must be fully understood before they can be chosen as models for functional studies. Expression levels of miRNAs relate to cell type and tissue context. This study provides insights on miRNA content of two cell models used for cancer research. Pathways commonly deregulated in HNSCC might be targeted by most expressed and also by differentially expressed miRNAs. Results indicate that the use of cell models for cancer research demands careful assessment of underlying molecular characteristics for proper data interpretation. Additionally, one new miRNA-like molecule with a potential role in cancer was identified in the cell lines and clinical samples.