5 resultados para betaine
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We aimed to investigate the role of betaine supplementation on muscle phosphorylcreatine (PCr) content and strength performance in untrained subjects. Additionally, we compared the ergogenic and physiological responses to betaine versus creatine supplementation. Finally, we also tested the possible additive effects of creatine and betaine supplementation. This was a double-blind, randomized, placebo-controlled study. Subjects were assigned to receive betaine (BET; 2 g/day), creatine (CR; 20 g/day), betaine plus creatine (BET + CR; 2 + 20 g/day, respectively) or placebo (PL). At baseline and after 10 days of supplementation, we assessed muscle strength and power, muscle PCr content, and body composition. The CR and BET + CR groups presented greater increase in muscle PCr content than PL ( = 0.004 and = 0.006, respectively). PCr content was comparable between BET versus PL ( = 0.78) and CR versus BET + CR ( = 0.99). CR and BET + CR presented greater muscle power output than PL in the squat exercise following supplementation ( = 0.003 and = 0.041, respectively). Similarly, bench press average power was significantly greater for the CR-supplemented groups. CR and BET + CR groups also showed significant pre- to post-test increase in 1-RM squat and bench press (CR: = 0.027 and < 0.0001; BET + CR: = 0.03 and < 0.0001 for upper- and lower-body assessments, respectively) No significant differences for 1-RM strength and power were observed between BET versus PL and CR versus BET + CR. Body composition did not differ between the groups. In conclusion, we reported that betaine supplementation does not augment muscle PCr content. Furthermore, we showed that betaine supplementation combined or not with creatine supplementation does not affect strength and power performance in untrained subjects.
Resumo:
The concept of Education for Sustainable Development, ESD, has been introduced in a period where chemistry education is undergoing a major change, both in emphasis and methods of teaching. Studying an everyday problem, with an important socio-economic impact in the laboratory is a part of this approach. Presently, the students in many countries go to school in vehicles that run, at least partially, on biofuels; it is high time to let them test these fuels. The use of renewable fuels is not new: since 1931 the gasoline sold in Brazil contains 20 to 25 vol-% of bioethanol; this composition is being continually monitored. With ESD in mind, we have employed a constructivist approach in an undergraduate course, where UV-vis spectroscopy has been employed for the determination of the composition of two fuel blends, namely, bioethanol/water, and bioethanol/gasoline. The activities started by giving a three-part quiz. The first and second ones introduced the students to historical and practical aspects of the theme (biofuels). In the third part, we asked them to develop a UV-vis experiment for the determination of the composition of fuel blends. They have tested two approaches: (i) use of a solvatochromic dye, followed by determination of fuel composition from plots of the empirical fuel polarity versus its composition; (ii) use of an ethanol-soluble dye, followed by determination of the blend composition from a Beer's law plot; the former proved to be much more convenient. Their evaluation of the experiment was highly positive, because of the relevance of the problem; the (constructivist) approach employed, and the bright colors that the solvatochromic dye acquire in these fuel blends. Thus ESD can be fruitfully employed in order to motivate the students; make the laboratory "fun", and teach them theory (solvation). The experiments reported here can also be given to undergraduate students whose major is not chemistry (engineering, pharmacy, biology, etc.). They are low-cost and safe to be introduced at high-school level.
Resumo:
Interfacial concentrations of chloride and bromide ions, with Li+, Na+, K+, Rb+, Cs+, trimethylammonium (TMA(+)), Ca2+, and Mg2+ as counterions, were determined by chemical trapping in micelles formed by two zwitterionic surfactants, namely N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and hexadecylphosphorylcholine (HDPC) micelles. Appropriate standard curves for the chemical trapping method were obtained by measuring the product yields of chloride and bromide salts with 2,4,6-trimethyl-benzenediazonium (BF4) in the presence of low molecular analogs (N,N,N-trimethyl-propane sulfonate and methyl-phosphorylcholine) of the employed surfactants. The experimentally determined values for the local Br- (Cl-) concentrations were modeled by fully integrated non-linear Poisson Boltzmann equations. The best fits to all experimental data were obtained by considering that ions at the interface are not fixed at an adsorption site but are free to move in the interfacial plane. In addition, the calculation of ion distribution allowed the estimation of the degree of ion coverage by using standard chemical potential differences accounting for ion specificity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Information on the solvation in mixtures of water, W, and the ionic liquids, ILs, 1-allyl-3-R-imidazolium chlorides; R = methyl, 1-butyl, and 1-hexyl, has been obtained from the responses of the following solvatochromic probes: 2,6-dibromo-4-[(E)-2-(1-R-pyridinium-4-yl)ethenyl] phenolate, R = methyl, MePMBr2; 1-octyl, OcPMBr(2), and the corresponding quinolinium derivative, MeQMBr(2). A model developed for solvation in binary mixtures of W and molecular solvents has been extended to the present mixtures. Our objective is to assess the relevance to solvation of hydrogen-bonding and the hydrophobic character of the IL and the solvatochromic probe. Plots of the medium empirical polarity, E-T(probe) versus its composition revealed non-ideal behavior, attributed to preferential solvation by the IL and, more efficiently, by the IL-W hydrogen-bonded complex. The deviation from linearity increases as a function of increasing number of carbon atoms in the alkyl group of the IL, and is larger than that observed for solvation by W plus molecular solvents (1-propanol and 2-(1-butoxy)ethanol) that are more hydrophobic than the ILs investigated. This enhanced deviation is attributed to the more organized structure of the ILs proper, which persists in their aqueous solutions. MeQMBr(2) is more susceptible to solvent lipophilicity than OcPMBr(2), although the former probe is less lipophilic. This enhanced susceptibility agrees with the important effect of annelation on the contributions of the quinonoid and zwitterionic limiting structures to the ground and excited states of the probe, hence on its response to both medium composition and lipophilicity of the IL.
Resumo:
Individuals with Down syndrome (DS) carry three copies of the Cystathionine beta-synthase (C beta S) gene. The increase in the dosage of this gene results in an altered profile of metabolites involved in the folate pathway, including reduced homocysteine (Hcy), methionine, S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM). Furthermore, previous studies in individuals with DS have shown that genetic variants in genes involved in the folate pathway influence the concentrations of this metabolism's products. The purpose of this study is to investigate whether polymorphisms in genes involved in folate metabolism affect the plasma concentrations of Hcy and methylmalonic acid (MMA) along with the concentration of serum folate in individuals with DS. Twelve genetic polymorphisms were investigated in 90 individuals with DS (median age 1.29 years, range 0.07-30.35 years; 49 male and 41 female). Genotyping for the polymorphisms was performed either by polymerase chain reaction (PCR) based techniques or by direct sequencing. Plasma concentrations of Hcy and MMA were measured by liquid chromatography-tandem mass spectrometry as previously described, and serum folate was quantified using a competitive immunoassay. Our results indicate that the MTHFR C677T, MTR A2756G, TC2 C776G and BHMT G742A polymorphisms along with MMA concentration are predictors of Hcy concentration. They also show that age and Hcy concentration are predictors of MMA concentration. These findings could help to understand how genetic variation impacts folate metabolism and what metabolic consequences these variants have in individuals with trisomy 21.