16 resultados para best-response dynamics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The response of the Sao Paulo Continental Shelf (SPCS) to synoptic wind forcing has been analyzed. Two different methods are used for this purpose, one based on hydrographic data, bottom topography, and geographical characteristics, and a second on analyzing currentmeter data directly and using empirical orthogonal functions. Both methods show similar results for an essentially barotropic shelf. The SPCS response in the subinertial frequency band appears to be trapped on the continental shelf. Numerical experiments have also been carried out showing results that qualitatively agree with the observations, including the velocity component parallel to the coastline.
Resumo:
PURPOSE. To better understand the relative contributions of rod, cone, and melanopsin to the human pupillary light reflex (PLR) and to determine the optimal conditions for assessing the health of the rod, cone, and melanopsin pathways with a relatively brief clinical protocol. METHODS. PLR was measured with an eye tracker, and stimuli were controlled with a Ganzfeld system. In experiment 1, 2.5 log cd/m(2) red (640 +/- 10 nm) and blue (467 +/- 17 nm) stimuli of various durations were presented after dark adaptation. In experiments 2 and 3, 1-second red and blue stimuli were presented at different intensity levels in the dark (experiment 2) or on a 0.78 log cd/m(2) blue background (experiment 3). Based on the results of experiments 1 to 3, a clinical protocol was designed and tested on healthy control subjects and patients with retinitis pigmentosa and Leber`s congenital amaurosis. RESULTS. The duration for producing the optimal melanopsin-driven sustained pupil response after termination of an intense blue stimulus was 1 second. PLR rod-and melanopsin-driven components are best studied with low-and high-intensity flashes, respectively, presented in the dark (experiment 2). A blue background suppressed rod and melanopsin responses, making it easy to assess the cone contribution with a red flash (experiment 3). With the clinical protocol, robust melanopsin responses could be seen in patients with few or no contributions from the rods and cones. CONCLUSIONS. It is possible to assess the rod, cone, and melanopsin contributions to the PLR with blue flashes at two or three intensity levels in the dark and one red flash on a blue background. (Invest Ophthalmol Vis Sci. 2011; 52: 6624-6635) DOI: 10.1167/iovs.11-7586
Resumo:
Objective: To compare the polymerization status of mouse oocyte spindles exposed to various temperatures at various stages of meiosis. Design: Experimental animal study. Setting: University animal laboratory. Animal(s): CF1 mice. Intervention(s): Immature oocytes matured to metaphase I (MI), telophase I (TI), and metaphase II (MII) were incubated at 37 degrees C (control), room temperature (RT), or 4 degrees C for 0, 10, 30, and 60 minutes. Spindle analysis subsequently was performed using polarized field microscopy and immunocytochemistry. Spindles of TI and MII oocytes that underwent vitrification and warming were analyzed also by immunocytochemistry. Main Outcome Measure(s): Detection of polymerized meiotic spindles. Result(s): At RT, and after 60 minutes at 4 degrees C, a significant time-dependent decrease in the percentage of polymerized meiotic spindles was observed in MI and MII oocytes, but not in TI oocytes. The polymerization of TI spindles at 4 degrees C was similar to that of TI spindles at 4 degrees C that underwent vitrification and warming. Conclusion(s): Significant differences in the microtubule dynamics of MI, TI, and MII oocytes incubated at different temperatures were observed. In particular, meiotic spindles in TI oocytes exhibited less depolymerization than did metaphase spindles. (Fertil Steril (R) 2012; 97: 714-9. (C) 2012 by American Society for Reproductive Medicine.)
Resumo:
Background: Altered deposition of extracellular matrix (ECM) in the airway smooth muscle (ASM) layer as observed in asthma may influence ASM mechanical properties. We hypothesized that ECM in ASM is associated with airway function in asthma. First, we investigated the difference in ECM expression in ASM between asthma and controls. Second, we examined whether ECM expression is associated with bronchoconstriction and bronchodilation in vivo. Methods: Our cross-sectional study comprised 19 atopic mild asthma patients, 15 atopic and 12 nonatopic healthy subjects. Spirometry, methacholine responsiveness, deep-breath-induced bronchodilation (Delta R-rs) and bronchoscopy with endobronchial biopsies were performed. Positive staining of elastin, collagen I, III and IV, decorin, versican, fibronectin, laminin and tenascin in ASM was quantified as fractional area and mean density. Data were analysed using Pearson's or Spearman's correlation coefficient. Results: Extracellular matrix expression in ASM was not different between asthma and controls. In asthmatics, fractional area and mean density of collagen I and III were correlated with methacholine dose-response slope and DRrs, respectively (r = 0.71, P < 0.01; r = 0.60, P = 0.02). Furthermore, ASM collagen III and laminin in asthma were correlated with FEV1 reversibility (r = -0.65, P = 0.01; r = -0.54, P = 0.04). Conclusion: In asthma, ECM in ASM is related to the dynamics of airway function in the absence of differences in ECM expression between asthma and controls. This indicates that the ASM layer in its full composition is a major structural component in determining variable airways obstruction in asthma.
Resumo:
OBJECTIVE: To estimate the response in lung growth and vascularity after fetal endoscopic tracheal occlusion for severe congenital diaphragmatic hernia in the prediction of neonatal survival. METHODS: Between January 2006 and December 2010, fetal lung parameters (observed-to-expected lung-to-head ratio; observed-to-expected lung volume; and contralateral lung vascularization index) were evaluated before fetal tracheal occlusion and were evaluated longitudinally every 2 weeks in 72 fetuses with severe isolated congenital diaphragmatic hernia. Thirty-five fetuses underwent fetal endoscopic tracheal occlusion and 37 cases did not. RESULTS: Survival rate was significantly higher in the fetal endoscopic tracheal occlusion group (54.3%) than in the no fetal endoscopic tracheal occlusion group (5.4%, P<.01). Fetal endoscopic tracheal occlusion resulted in a significant improvement in fetal lung size and pulmonary vascularity when compared with fetuses that did not go to the fetal intervention (increase of the observed-to-expected lung-to-head ratio, observed-to-expected total lung volume, and contralateral pulmonary vascularization index 56.2% compared with 0.3%, 37.9% compared with 0.1%, and 98.6% compared with 0.0%, respectively; P<.01). Receiver operating characteristic curves indicated that the observed-to-expected total fetal lung volume was the single best predictor of neonatal survival before fetal endoscopic tracheal occlusion (cutoff 0.23, area under the curve [AUC] 0.88, relative risk 5.3, 95% confidence interval [CI] 1.4-19.7). However, the contralateral lung vascularization index at 4 weeks after fetal endoscopic tracheal occlusion was more accurate in the prediction of neonatal outcome (cutoff 24.0%, AUC 0.98, relative risk 9.9, 95% CI 1.5-66.9) with the combination of observed-to-expected lung volumes and contralateral lung vascularization index at 4 weeks being the best predictor of outcome (AUC 0.98, relative risk 16.6, 95% CI 2.5-112.3). CONCLUSION: Fetal endoscopic tracheal occlusion improves survival rate by increasing the lung size and pulmonary vascularity in fetuses with severe congenital diaphragmatic hernia. The pulmonary response after fetal endoscopic tracheal occlusion can be used to predict neonatal survival. (Obstet Gynecol 2012; 119: 93-101) DOI: 10.1097/AOG.0b013e31823d3aea
Resumo:
Objective To evaluate the changes in tissue perfusion parameters in dogs with severe sepsis/septic shock in response to goal-directed hemodynamic optimization in the ICU and their relation to outcome. Design Prospective observational study. Setting ICU of a veterinary university medical center. Animals Thirty dogs with severe sepsis or septic shock caused by pyometra who underwent surgery and were admitted to the ICU. Measurements and Main Results Severe sepsis was defined as the presence of sepsis and sepsis-induced dysfunction of one or more organs. Septic shock was defined as the presence of severe sepsis plus hypotension not reversed with fluid resuscitation. After the presumptive diagnosis of sepsis secondary to pyometra, blood samples were collected and clinical findings were recorded. Volume resuscitation with 0.9% saline solution and antimicrobial therapy were initiated. Following abdominal ultrasonography and confirmation of increased uterine volume, dogs underwent corrective surgery. After surgery, the animals were admitted to the ICU, where resuscitation was guided by the clinical parameters, central venous oxygen saturation (ScvO2), lactate, and base deficit. Between survivors and nonsurvivors it was observed that the ScvO2, lactate, and base deficit on ICU admission were each related independently to death (P = 0.001, P = 0.030, and P < 0.001, respectively). ScvO2 and base deficit were found to be the best discriminators between survivors and nonsurvivors as assessed via receiver operator characteristic curve analysis. Conclusion Our study suggests that ScvO2 and base deficit are useful in predicting the prognosis of dogs with severe sepsis and septic shock; animals with a higher ScvO2 and lower base deficit at admission to the ICU have a lower probability of death.
Resumo:
Soil sulfur (S) partitioning among the various pools and changes in tropical pasture ecosystems remain poorly understood. Our study aimed to investigate the dynamics and distribution of soil S fractions in an 8-year-old signal grass (Brachiaria decumbens Stapf.) pasture fertilized with nitrogen (N) and S. A factorial combination of two N rates (0 and 600?kg N ha1 y1, as NH4NO3) and two S rates (0 and 60?kg S ha1 y1, as gypsum) were applied to signal grass pastures during 2 y. Cattle grazing was controlled during the experimental period. Organic S was the major S pool found in the tropical pasture soil, and represented 97% to 99% of total S content. Among the organic S fractions, residual S was the most abundant (42% to 67% of total S), followed by ester-bonded S (19% to 42%), and C-bonded S (11% to 19%). Plant-available inorganic SO4-S concentrations were very low, even for the treatments receiving S fertilizers. Low inorganic SO4-S stocks suggest that S losses may play a major role in S dynamics of sandy tropical soils. Nitrogen and S additions affected forage yield, S plant uptake, and organic S fractions in the soil. Among the various soil fractions, residual S showed the greatest changes in response to N and S fertilization. Soil organic S increased in plots fertilized with S following the residual S fraction increment (16.6% to 34.8%). Soils cultivated without N and S fertilization showed a decrease in all soil organic S fractions.
Resumo:
Aggregate investment in the US economy displays a hump-shaped pattern in response to shocks, and the autocorrelation of aggregate investment growth is positive for the first few quarters, turning negative for the later quarters. This paper shows that this feature of the data is the natural outcome of a two-sector consumption/investment model designed and calibrated to reproduce plant-level evidence on capita: accumulation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
It is possible to determine the optimum time for permanence of vegetative propagules (mini-cuttings) inside a greenhouse for rooting, and this value can be used to optimize the structure of the nursery. The aim of this study was to determine the dynamics of adventitious rooting in mini-cuttings of three clones of Eucalyptus benthamii x Eucalyptus dunnii. Sprouts of H12, H19 and H20 clones were collected from mini-stumps that were planted in gutters containing sand and grown in a semi-hydroponic system. The basal region of the mini-cuttings was immersed in 2,000 mg L-1 indole-3-butyric acid (IBA) solution for 10 seconds. The rooting percentage of the mini-cuttings, the total length of the root system and the rooting rate per mini-cutting were also evaluated at 0 (time of planting), 7, 14, 21, 28, 35, 42, 49 and 56 days. We used logistic and exponential regression to mathematically model the speed of rhizogenesis. The rooting percentage was best represented as a logistic model, and the total length of the root system was best represented as an exponential model. The clones had different speeds of adventitious rooting. The optimum time for permanence of the mini-cuttings inside the greenhouse for rooting was between 35 and 42 days, and varied depending on the genetic material.
Resumo:
We investigate how the initial geometry of a heavy-ion collision is transformed into final flow observables by solving event-by-event ideal hydrodynamics with realistic fluctuating initial conditions. We study quantitatively to what extent anisotropic flow (nu(n)) is determined by the initial eccentricity epsilon(n) for a set of realistic simulations, and we discuss which definition of epsilon(n) gives the best estimator of nu(n). We find that the common practice of using an r(2) weight in the definition of epsilon(n) in general results in a poorer predictor of nu(n) than when using r(n) weight, for n > 2. We similarly study the importance of additional properties of the initial state. For example, we show that in order to correctly predict nu(4) and nu(5) for noncentral collisions, one must take into account nonlinear terms proportional to epsilon(2)(2) and epsilon(2)epsilon(3), respectively. We find that it makes no difference whether one calculates the eccentricities over a range of rapidity or in a single slice at z = 0, nor is it important whether one uses an energy or entropy density weight. This knowledge will be important for making a more direct link between experimental observables and hydrodynamic initial conditions, the latter being poorly constrained at present.
Resumo:
Measurement-based quantum computation is an efficient model to perform universal computation. Nevertheless, theoretical questions have been raised, mainly with respect to realistic noise conditions. In order to shed some light on this issue, we evaluate the exact dynamics of some single-qubit-gate fidelities using the measurement-based quantum computation scheme when the qubits which are used as a resource interact with a common dephasing environment. We report a necessary condition for the fidelity dynamics of a general pure N-qubit state, interacting with this type of error channel, to present an oscillatory behavior, and we show that for the initial canonical cluster state, the fidelity oscillates as a function of time. This state fidelity oscillatory behavior brings significant variations to the values of the computational results of a generic gate acting on that state depending on the instants we choose to apply our set of projective measurements. As we shall see, considering some specific gates that are frequently found in the literature, the fast application of the set of projective measurements does not necessarily imply high gate fidelity, and likewise the slow application thereof does not necessarily imply low gate fidelity. Our condition for the occurrence of the fidelity oscillatory behavior shows that the oscillation presented by the cluster state is due exclusively to its initial geometry. Other states that can be used as resources for measurement-based quantum computation can present the same initial geometrical condition. Therefore, it is very important for the present scheme to know when the fidelity of a particular resource state will oscillate in time and, if this is the case, what are the best times to perform the measurements.
Resumo:
Background: The temporal and geographical diversification of Neotropical insects remains poorly understood because of the complex changes in geological and climatic conditions that occurred during the Cenozoic. To better understand extant patterns in Neotropical biodiversity, we investigated the evolutionary history of three Neotropical swallowtail Troidini genera (Papilionidae). First, DNA-based species delimitation analyses were conducted to assess species boundaries within Neotropical Troidini using an enlarged fragment of the standard barcode gene. Molecularly delineated species were then used to infer a time-calibrated species-level phylogeny based on a three-gene dataset and Bayesian dating analyses. The corresponding chronogram was used to explore their temporal and geographical diversification through distinct likelihood-based methods. Results: The phylogeny for Neotropical Troidini was well resolved and strongly supported. Molecular dating and biogeographic analyses indicate that the extant lineages of Neotropical Troidini have a late Eocene (33-42 Ma) origin in North America. Two independent lineages (Battus and Euryades + Parides) reached South America via the GAARlandia temporary connection, and later became extinct in North America. They only began substantive diversification during the early Miocene in Amazonia. Macroevolutionary analysis supports the "museum model" of diversification, rather than Pleistocene refugia, as the best explanation for the diversification of these lineages. Conclusions: This study demonstrates that: (i) current Neotropical biodiversity may have originated ex situ; (ii) the GAARlandia bridge was important in facilitating invasions of South America; (iii) colonization of Amazonia initiated the crown diversification of these swallowtails; and (iv) Amazonia is not only a species-rich region but also acted as a sanctuary for the dynamics of this diversity. In particular, Amazonia probably allowed the persistence of old lineages and contributed to the steady accumulation of diversity over time with constant net diversification rates, a result that contrasts with previous studies on other South American butterflies.
Resumo:
The efficacy of estrus synchronization using short-term protocol was evaluated by ultrasound exams in Suffolk ewes during the pre-breeding season. The control Group (n = 12) was synchronized by treatment for 12 days with vaginal sponges impregnated with medroxyprogesterone acetate, and 400 IU eCG at sponge withdrawal. Experimental groups I, II and III kept the sponge in place for 4 days, and 100 µg of PGF2a was administered at sponge withdrawal. Additionally, Group I (n = 12) had 0.1 mg of estradiol benzoate (EB) administered during sponge placement and 50 µg of GnRH 48 hours after sponge removal. Group II (n = 6) had 35 mg of progesterone (P4) injected, and 0.1 mg of EB administered during sponge placement, 400 IU eCG at withdrawal and 48 hours after, 50 µg GnRH were administrated. Group III (n = 12) had 35 mg of P4 and 0.2 mg of EB administered at sponge placement, 400 IU eCG at withdrawal, and 50 µg of GnRH was administrated after 56 hours. Ovaries were monitored through ultrasound scanning. Concerning the first wave, no difference was detected between the control group and the experimental groups. However, the characteristics of ovulatory wave were significantly different between the groups. The duration of the follicular wave was shorter for Group III than for Group II. The follicle in Group I reached its maximum diameter before the Group II. The diameter of the follicle at the sponge withdrawal in the control group was larger than in Group I. After sponge withdrawal, the follicular growth rate was smaller in the control group than in Group III. The maximum diameter of the follicle in Group II was larger than in the other groups. The short-term protocol in which estrogen was used did not synchronize the emergence of the wave of follicular development.
Resumo:
The objective of this experiment was to evaluate tiller population density and the dynamics of the tillering process in marandu palisade grass subjected to strategies of rotational stocking management and nitrogen fertilization. Treatments corresponded to combinations between two targets of pre-grazing conditions (sward surface height of 25 and 35 cm) and two rates of nitrogen application (50 and 200 kg ha-1 year-1), and were allocated to experimental units according to a 2 x 2 factorial arrangement in a randomised complete block design, with four replications. The following response variables were studied: initial (TPDi), intermediate (TPDm) and final (TPDf) tiller population density as well as the rates of tiller appearance (TAR) and death (TDR) and the tiller population stability index (SI). TPDi was similar to all treatments, with differences in tiller population density becoming more pronounced as the experiment progressed, resulting in larger TPDf on swards managed at 25 cm pre-grazing height. Tiller death was larger on swards managed at 35 cm, with differences in tiller appearance being recorded only from February 2010 onwards. Stability of tiller population was higher on swards managed at 25 cm pre-grazing height. Overall, there was no effect of nitrogen on the studied variables, and the most adequate grazing strategy corresponded to the pre-grazing height of 25 cm, regardless of the nitrogen application rate used.
Resumo:
Intravital imaging techniques are the best approach to investigate in situ cellular behavior under physiological conditions. Many techniques have emerged during these last few years for this purpose. We recently described an intravital imaging technique that allows for the observation of placenta physiological responses at the labyrinth layer of this tissue. This technique will be very useful to study many placental opportunistic infections and in this article we reinforce its usefulness by analyzing placental physiological entrapment of beads and parasites. In particular, our results show that small beads (1.0 μm) or Plasmodium chabaudi-GFP-infected-Red Blood Cells (Pc-GFP-iRBCs) cannot get trapped inside small or large blood vessels of popliteal lymph nodes (PLNs). Inside the placenta, clusters of beads could only be found inside the maternal blood vessels. However, Pc-GFP-iRBCs were found inside and outside the maternal blood vessels. We observed that trophoblasts can ingest infected-Red Blood Cells (iRBCs) in vitro and immunofluorescence of placenta revealed Pc-GFP-iRBCs inside and outside the maternal blood vessels. Taken together, we conclude that fast deposition of particles inside blood vessels seems to be an intrinsic characteristic of placenta blood flow, but iRBCs could be internalized by trophoblast cells. Thus these results represent one of the many possible uses of our intravital imaging technique to address important questions inside the parasitological field.