3 resultados para bacterium detection
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Vibrio cholerae is an autochthonous marine bacterium, and its association with diverse planktonic crustaceans has been extensively investigated; however, the presence of V. cholerae on individuals of most phyla of planktonic animals is still incompletely understood. The objective of this study was to analyze the distribution of V. cholerae serogroup O1 associated with specific zooplankton taxa in an estuary and the adjacent continental shelf of the southeastern Brazilian coast. The occurrence of the bacterium was assessed in zooplankton samples, specifically on the most abundant taxa, using direct fluorescence assay (DFA) and direct viable count-direct fluorescence assay (DVC-DFA) methods. Vibrio cholerae O1 was detected in 88% of samples collected from the Santos-Bertioga estuary and in 67% of samples from the shelf. The salinity of the estuarine water ranged from 21.8 to 34.6, significantly lower than the shelf water which was 32.1-36.1. Salinity was the only environmental variable measured that displayed a significant correlation with the presence of V. cholerae (P < 0.05). Vibrio cholerae O1 was detected in chaetognaths, pluteus larvae of echinoderms and planktonic fish eggs (Engraulidae), all new sites for this bacterium.
Resumo:
Mastitis is the most common infectious disease affecting dairy cattle; in addition, it remains the most economically important disease of dairy industries around the world. Streptococcus agalactiae, a contagious pathogen associated with subclinical mastitis, is highly infectious. This bacterium can cause an increase in bulk tank bacterial counts (BTBC) and bulk tank somatic cell counts (BTSCC). The microbiological identification of S. agalactiae in samples from bulk tanks is an auxiliary method to control contagious mastitis. Thus, there are some limitations for time-consuming cultures or identification methods and additional concerns about the conservation and transport of samples. Bulk tank samples from 247 dairy farms were cultured and compared through polymerase chain reaction (PCR), directed to 16S rRNA genes of S. agalactiae, followed by BTBC and S. agalactiae isolation. The mean value of BTBC was 1.08 x 10(6) CFU mL(-1) and the bacterium was identified through the microbiological method in 98 (39.7%; CI95% = 33.8-45.9%) and through PCR in 110 (44.5%; CI95% = 38.5-50.8%) samples. Results indicated sensitivity of 0.8571 +/- 0.0353 (CI95% = 0.7719-0.9196) and specificity of 0.8255 +/- 0.0311 (CI95% = 0.7549-0.8827). The lack of significant difference between microbiological and molecular results (kappa = 0.6686 +/- 0.0477 and CI95% = 0.5752-0.7620) indicated substantial agreement between the methods. This suggests that PCR can be used for bulk tank samples to detect contagious mastitis caused by S. agalactiae. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Actinobaculum suis is an important agent related to urinary infection in swine females. Due to its fastidious growth characteristics, the isolation of this anaerobic bacterium is difficult, thus impairing the estimation of its prevalence. The purpose of this study was to develop and test a polymerase chain reaction (PCR) for the detection and identification of A. suis and then compare these results with traditional isolation methods. Bacterial isolation and PCR were performed on one hundred and ninety-two urine samples from sows and forty-five preputial swabs from boars. The results indicate that this PCR was specific for A. suis, presenting a detection limit between 1.0 x 10(1) CFU/mL and 1.0 x 10(2) CFU/mL. A. suis frequencies, as measured by PCR, were 8.9% (17/192) in sow urine samples and 82.2% (37/45) in preputial swabs. Assessed using conventional culturing techniques, none of the urine samples were positive for A. suis; however, A. suis was detected in 31.1% (14/45) of the swabs. This PCR technique was shown to be an efficient method for the detection of A. suis in urine and preputial swabs.