5 resultados para bacterial cellulose

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to characterize the physicochemical properties of bacterial cellulose (BC) membranes functionalized with osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP[10-14], and to evaluate in vitro osteoinductive potential in early osteogenesis, besides, to evaluate cytotoxic, genotoxic and/or mutagenic effects. Peptide incorporation into the BC membranes did not change the morphology of BC nanofibers and BC crystallinity pattern. The characterization was complemented by Raman scattering, swelling ratio and mechanical tests. In vitro assays demonstrated no cytotoxic, genotoxic or mutagenic effects for any of the studied BC membranes. Culture with osteogenic cells revealed no difference in cell morphology among all the membranes tested. Cell viability/proliferation, total protein content, alkaline phosphatase activity and mineralization assays indicated that BC-OGP membranes enabled the highest development of the osteoblastic phenotype in vitro. In conclusion, the negative results of cytotoxicity, genotoxicity and mutagenicity indicated that all the membranes can be employed for medical supplies, mainly in bone tissue engineering/regeneration, due to their osteoinductive properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-inorganic composite membranes were prepared from membranes of the bio-polymer bacterial cellulose (BC) and organic-inorganic sal composed of nanoparticulate boehmite and epoxi modified siloxane. Bacterial cellulose membranes are obtained in a highly hydrated state (1% cellulose and 99% cellulose) from cultures of Gluconacetobacter xylinus and could be used in the never-dried or in the dried state. Depending on the use of dried or never-dried BC membranes two main kinds of composites were obtained. In the first one dried BC membranes coated with the hybrid sol have lead to transparent membranes displaying a hi-phase structure where the two components could be easily distinguished, with individual structures preserved. A decrease was observed for tensile strength (50.5 MPa) and Young's Modulus (2.8 GPa) when compared to pure BC membrane (112.5 MPa and 12.7 GPa). Elongation at break was observed to increase (2.5% against 1.5% observed for BC). When never-dried BC membranes were used transparent membranes were also obtained, however an improvement was observed for mechanical properties (tensile strength - 116 MPa and Young's Modulus - 13.7 GPa). A lower value was obtained for the elongation at break (1.3%). In the last case the interaction between the two-phases lead to changes in the cellulose crystallinity as shown by X rays diffraction results. Multifunctional transparent membranes displaying the cellulose structure in one side and the boehmite-siloxane structure at the opposite face could find special applications in opto-electronics or biomedical areas taking advantage of the different chemical nature of the two components. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-supported organic-inorganic hybrid transparent films have been prepared from bacterial cellulose and boehmite. SEM results indicate that the BC membranes are covered by Boehmite and XRD patterns suggest structural changes on cellulose due to Boehmite addition. Thermal stability is accessed through TG curves and is dependent on Boehmite content. Transparency, as evaluated by UV-Vis absorption, increases with increasing content of boehmite suggesting application of these materials as transparent substrates for opto-electronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is growing interest in cellulose nanofibres from renewable sources for several industrial applications. However, there is a lack of information about one of the most abundant cellulose pulps: bleached Eucalyptus kraft pulp. The objective of the present work was to obtain Eucalyptus cellulose micro/nanofibres by three different processes, namely: refining, sonication and acid hydrolysis of the cellulose pulp. The refining was limited by the low efficiency of isolated nanofibrils, while sonication was more effective for this purpose. However, the latter process occurred at the expense of considerable damage to the cellulose structure. The whiskers obtained by acid hydrolysis resulted in nanostructures with lower diameter and length, and high crystallinity. Increasing hydrolysis reaction time led to narrower and shorter whiskers, but increased the crystallinity index. The present work contributes to the different widespread methods used for the production of micro/nanofibres for different applications. (C) 2012 Elsevier Ltd. All rights reserved.