4 resultados para attractive traps
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Diabrotica speciosa (Germar) is an economically important pest of Neotropical cultures and represents a quarantine risk for Neartic and Paleartic Regions. Despite its agricultural importance, few studies have been done on mating behavior and chemical communication, which has delayed the development of behavioral techniques for population management, such as the use of pheromone traps. In this study, we determined 1) the age at first mating; 2) diel rhythm of matings; 3) number of matings over 7 d; 4) the sequence of D. speciosa activities during premating, mating, and postmating; 5) the duration of each activity; and 6) response to male and female conspecific volatiles in Y-tube olfactometer. The first mating occurred between the third and seventh day after adult emergence and the majority of pairs mated on the fourth day after emergence. Pairs of D. speciosa showed a daily rhythm of mating with greater sexual activity between the end of the photophase and the first half of the scotophase. During the 7 d of observation, most pairs mated only once, although 30% mated two, three, or four times. In a Y-tube olfactometer, males were attracted by virgin females as well as by the volatile compounds emitted by females. Neither males nor their volatiles were attractive to either sex. Our observation provide information about mating behavior of D. speciosa, which will be useful in future research in chemical communication, such as identification of the pheromone and development of management techniques for this species using pheromone traps.
Resumo:
It has been revealed that the network of excitable neurons via attractive coupling can generate spikes under stimuli of subthreshold signals with disordered phases. In this paper, we explore the firing activity induced by phase disorder in excitable neuronal networks consisting of both attractive and repulsive coupling. By increasing the fraction of repulsive coupling, we find that, in the weak coupling strength case, the firing threshold of phase disorder is increased and the system response to subthreshold signals is decreased, indicating that the effect of inducing neuron firing by phase disorder is weakened with repulsive coupling. Interestingly, in the large coupling strength case, we see an opposite situation, where the coupled neurons show a rather large response to the subthreshold signals even with small phase disorder. The latter case implies that the effect of phase disorder is enhanced by repulsive coupling. A system of two-coupled excitable neurons is used to explain the role of repulsive coupling on phase-disorder-induced firing activity.
Resumo:
This study investigates the species richness and abundance of Drosophila Fallén, 1823 attracted to dung and carrion baited pitfall traps in natural areas with heterogeneous habitats at the Sierra de Minas, Eastern Serranías, southeastern Uruguay. Collecting was carried out on a monthly basis (May 2002 through April 2003). Drosophilids accounted for 0.84% (n = 131) and 3.61% (n = 158) of the Diptera collected from dung (n = 15,630) and carrion (n = 4,382) pitfall traps, respectively. A total of 12 species were identified, 11 of which belong to the subgenus Drosophila (the richest) and one to the subgenus Sophophora Sturtevant, 1939. Over 90% of the Drosophila specimens collected belong to five species of the subgenus Drosophila, namely D. gaucha Jaeger & Salzano, 1953, D. immigrans Sturtevant, 1921, D. mediovittata Frota-Pessoa, 1954, D. aff. nappae Vilela, Valente & Basso-da-Silva, 2004, and D. ornatifrons Duda, 1927. Drosophila cardini Sturtevant, 1916 is recorded for the first time from Uruguay. Drosophila abundance and species richness in the four habitats sampled in the Uruguayan Eastern Serranías, namely woodlands sierra, riparian forest, pine plantation and grazing grassland, were considered to be a function of habitat conservation. Diversity indices were low in all habitats. Different habitats supported particular coprophilous and necrophilous Drosophila species. The woodland sierra represents the most preserved habitat, and contributed with the highest species richness observed. Drosophila ornatifrons was the dominant species, with a restricted habitat distribution. On the other hand, grazed grassland, an environment modified by livestock management, had the lowest species richness: only a few specimens of D. repleta Wollaston, 1858. Regarding species composition, significant differences were found in some pairwise comparisons of groups of Drosophila species that included D. ornatifrons. Fly attraction to dung can be exploited as an alternative and/or complementary collecting method in ecological studies of Drosophila assemblages in natural areas.
Resumo:
The comprehensive control of morphology and structure is of extreme importance in semiconducting polymers when used as active layers in optoelectronic devices. In the work reported here, a systematic investigation of the structural and dynamical properties of poly(9,9-di-n-octyl-fluorene-alt-benzothiadiazole), known as F8BT, and their correlation with electrical properties is presented when the material is used as an active layer in optoelectronic devices. By means of X-ray diffraction, one observes that in thick layer films (thickness of about 4 μm) grown by drop-cast deposition, a solvent induced crystalline phase exists which evolves to a stable phase as the temperature is raised. This was not observed in thin films (thickness of about 250 nm) prepared by spin-coating within the investigated temperature range. By modeling the current-voltages characteristics of both thick and thin film devices, important information on the influence of crystallization on the trapping states could be drawn. Furthermore, the temperature dependence of the charge carrier mobility was found to be closely related to that of the molecular relaxation processes. The understanding of the nature of such molecular relaxations, measured by solid-state nuclear magnetic resonance methods, allows one to understand the importance of molecular relaxations and microstructure changes on the trap states of the system.