38 resultados para aqueous colloidal dispersion
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Wet impregnation of pre-synthesized surfactant-stabilized aqueous rhodium (0) colloidal suspension on silica was employed in order to prepare supported Rh-0 nanoparticles of well-defined composition, morphology and size. A magnetic core-shell support of silica (Fe(3)O4@SiO2) was used to increase the handling properties of the obtained nanoheterogeneous catalyst. The nanocomposite catalyst Fe3O4@SiO2-Rh-0 NPs was highly active in the solventless hydrogenation of model olefins and aromatic substrates under mild conditions with turnover frequencies up to 143,000 h(-1). The catalyst was characterized by various transmission electron microscopy techniques showing well-dispersed rhodium nanoparticles (similar to 3 nm) mainly located at the periphery of the silica coating. The heterogeneous magnetite-supported nanocatalyst was investigated in the hydrogenation of cyclohexene and compared to the previous surfactant-stabilized aqueous Rh-0 colloidal suspension and various silica-supported Rh-0 nanoparticles. Finally, the composite catalyst could be reused in several runs after magnetic separation. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Identifying new uses for residues of industries that process large quantities of biomass, as in bioethanol production, is essential for a sustainable development with reduced impact on the environment, which is the reason why many efforts have been devoted to find noble uses for lignins. in this study, a lignin obtained from sugarcane bagasse in a bioethanol producing plant was carboxymethylated to yield the water-soluble carboxymethyl lignin (CML), which was then used as stabilizing agent in aqueous alumina (Al2O3) suspensions. CML had a degree of substitution 0.46 +/- 0.01, in relation to the C9 unit of lignin, and behaved as a polyelectrolyte in a large pH range owing to the dissociation of carboxylic groups. The action of CML as stabilizing agent of alumina aqueous suspensions was investigated using viscometry, zeta potential, and photon correlation spectroscopy (PCS) measurements, mainly as a function of pH and time. Overall, the results showed that CML had a good performance as a deflocculating agent, because it led to dispersions with low viscosity and small change in particle size as a function of time. The positive effect from the addition of CML was confirmed in the morphological features of the material obtained from the alumina suspensions after elimination of water, as indicated by scanning electron microscopy. The stabilization of alumina suspensions afforded by CML opens the way for similar applications of modified lignins, whose electrical and structural properties may be tuned for specific uses in various industries, including the ceramic industry. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present study was to obtain microparticles of hydrochlorothiazide, a diuretic drug that practically insoluble in water, by spray drying and to investigate the influence of process parameters using a three-level, three-factor Box-Behnken design. Process yields, moisture content, particle size, flowability, and solubility were used to evaluate the spray-dried microparticles. The data were analyzed by response surface methodology using analysis of variance. The independent variables studied were outlet temperature, atomization pressure, and drug content. The formulations were prepared using polyvinylpyrrolidone and colloidal silicon dioxide as the hydrophilic carrier and drying aid, respectively. The microparticle yield ranged from 18.15 to 59.02% and resulted in adequate flow (17 to 32 degrees), moisture content between 2.52 to 6.18%, and mean particle size from 45 to 59 mu m. The analysis of variance showed that the factors studied influenced the yields, moisture content, angle of repose, and solubility. Thermal analysis and X-ray diffractometry evidenced no drug interactions or chemical modifications. Photomicrographs obtained by scanning electron microscopy showed spherical particles. The solubility and dissolution rates of hydrochlorothiazide were remarkably improved when compared with pure drug. Therefore, the results confirmed the high potential of the spray-drying technique to obtain microparticulate hydrochlorothiazide with enhanced pharmaceutical and dissolution properties.
Resumo:
Solid dispersions (SDs) are an approach to increasing the water solubility and bioavailability of lipophilic drugs such as ursolic acid (UA), a triterpenoid with trypanocidal activity. In this work, Gelucire 50/13, a surfactant compound with permeability-enhancing properties, and silicon dioxide, a drying adjuvant, were employed to produce SDs with UA. SDs and physical mixtures (PMs) in different drug/carrier ratios were characterized and compared using differential scanning calorimetry, hot stage microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size, water solubility values, and dissolution profiles. Moreover, LLC-MK2 fibroblast cytotoxicity and trypanocidal activity evaluation were performed to determine the potential of SD as a strategy to improve UA efficacy against Chagas disease. The results demonstrated the conversion of UA from the crystalline to the amorphous state through XRD. FTIR experiments provided evidence of intermolecular interactions among the drug and carriers through carbonyl peak broadening in the SDs. These findings helped explain the enhancement of water solubility from 75.98 mu g/mL in PMs to 293.43 mu g/mL in SDs and the faster drug release into aqueous media compared with pure UA or PMs, which was maintained after 6 months at room temperature. Importantly, improved SD dissolution was accompanied by higher UA activity against trypomastigote forms of Trypanosoma cruzi, but not against mammalian fibroblasts, enhancing the potential of UA for Chagas disease treatment.
Resumo:
The colloidal stability of poly(ethylene glycol)-decorated poly(methyl methacrylate), PMMA/Tween-20, particles was investigated by means of phase separation measurements, in the presence of sodium fluoride (NaF), sodium chloride, sodium bromide, sodium nitrate, or sodium thiocyanate (NaSCN) at 1.0 mol L-1. Following Hofmeister's series, the dispersions of PMMA/Tween-20 destabilized faster in the presence of NaF than with NaSCN. After the phase separation, the systems were homogenized and except for the dispersions in NaF, re-dispersed particles took longer to destabilize, indicating that anions adsorbed on the particles, creating a new surface. Except for F- ions, the adsorption of anions on the polar outmost shell was evidenced by means of tensiometry and small-angle X-ray scattering measurements. Fluoride ions induced the dehydration of the polar shell, without affecting the polar shell electron density, and the formation of very large aggregates. A model was proposed to explain the colloidal behavior in the presence of Hofmeister ions.
Resumo:
The sea urchin, Echinometra lucunter, can be found along the Western Central Atlantic shores. In Brazil, it is responsible by circa 50% of the accidents caused by marine animals. The symptoms usually surpass trauma and may be pathologically varied and last differently, ranging from spontaneous healing in a few days, to painful consequences lasting for weeks. In this work, we have mimicked the sea urchin accident by administering an aqueous extract of the spine into mice and rats and evaluated the pathophysiological developments. Our data clearly indicate that the sea urchin accident is indeed a pro-inflammatory event, triggered by toxins present in the spine that can cause edema and alteration in the leukocyte-endothelial interaction. Moreover, the spine extract was shown to exhibit a hyperalgesic effect. The extract is rich in proteins, as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but also contains other molecules that can be analyzed by reversed phase high-performance liquid chromatography. Altogether, these effects corroborate that an E. lucunter encounter is an accident and not an incident, as frequently reported by the victims.
Resumo:
Phase diagrams of poly(ethylene glycol)/polyacrylate/Na2SO4 systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coil can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coil homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na2SO4-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The removal of Pb2+ from aqueous solution by two Brazilian rocks that contain zeolites-amygdaloidal dacite (ZD) and sandstone (ZS)-was examined by batch experiments. ZD contains mordenite and ZS, stilbite. The effects of contact time, concentration of metal in solution and capacity of Na+ to recover the adsorbed metals were evaluated at room temperature (20A degrees C). The sorption equilibrium was reached in the 30 min of agitation time. Both materials removed 100% of Pb2+ from solutions at concentrations up to 50 mg/L, and at concentrations larger than 100 mg/L of Pb2+, the adsorption capacity of sandstone was more efficient than that of amygdaloidal dacite due to the larger quantities and the type of zeolites (stilbite) in the cement of this rock. All adsorbed Pb2+ was easily replaced by Na+ in both samples. The analysis of the adsorption models using nonlinear regression revealed that the Sips and the Freundlich isotherms provided the best fit for the ZS and ZD experimental data, respectively, indicating the heterogeneous adsorption surfaces of these zeolites.
Resumo:
A detailed magnetostratigraphic and rock-magnetism study of two Late Palaeozoic rhythmite exposures (Itu and Rio do Sul) from the Itarare Group (Parana Basin, Brazil) is presented in this paper. After stepwise alterning-field procedures and thermal cleaning were performed, samples from both collections show reversed characteristic magnetization components, which is expected for Late Palaeozoic rocks. However, the Itu rocks presented an odd, flat inclination pattern that could not be corrected with mathematical methods based on the virtual geomagnetic pole (VGP) distributions. Correlation tests between the maximum anisotropy of the magnetic susceptibility axis (K1) and the magnetic declination indicated a possible mechanical influence on the remanence acquisition. The Rio do Sul sequence displayed medium to high inclinations and provided a high-quality palaeomagnetic pole (after shallowing corrections of f = 0.8) of 347.5 degrees E 63.2 degrees S (N = 119; A95 = 3.3; K = 31), which is in accordance with the Palaeozoic apparent wander pole path of South America. The angular dispersion (Sb) for the distribution of the VGPs calculated on the basis of both the 45 degrees cut-off angle and Vandamme method was compared to the best-fit Model G for mid-latitudes. Both of the Sb results are in reasonable agreement with the predicted (palaeo) latitudinal S-? relationship during the Cretaceous Normal Superchron (CNS), although the Sb value after the Vandamme cut-off has been applied is a little lower than expected. This result, in addition to those for low palaeolatitudes during the Permo-Carboniferous Reversed Superchron (PCRS) previously reported, indicates that the low secular variation regime for the geodynamo that has already been discovered in the CNS might have also been predominant during the PCRS.
Resumo:
The partitioning of Clavulanic Acid (CA) in a novel inexpensive and stable aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The aqueous two-phase systems are formed by mixing both polymers with a salt (NaCl or Na2SO4) and an aqueous solution of CA. The stability of CA on the presence of both polymers was investigated and it was observed that these polymers do not degrade the biomolecule. The effect of PEG-molecular size, polymer concentrations on the commercial CA partitioning has been studied, at 25 degrees C. The data showed that commercial CA was preferentially partitioned for the PEG-rich phase with a partition coefficient (K-CA) between 1 and 12 in the PEG/NaPA aqueous two phase systems supplemented with NaCl and Na2SO4. The partition to the PEG phase was increased in the systems with high polymer concentrations. Furthermore, Na2SO4 caused higher CA preference for the PEG-phase than NaCl. The systems having a composition with 10 wt.% of PEG4000, 20 wt.% of NaPA8000 and 6 wt.% of Na2SO4 were selected as the optimal ones in terms of recovery of CA from fermented broth of Streptomyces clavuligerus. The partitioning results (K-CA = 9.15 +/- 1.06) are competitive with commercial extraction methods of CA (K-CA = 11.91 +/- 2.08) which emphasizes that the system PEG/NaPA/Na2SO4 can be used as a new process to CA purification/concentration from fermented broth. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Centrifugal countercurrent distribution (CCCD) in an aqueous two-phase system (TPS) is a resolute technique revealing sperm heterogeneity and for the estimation of the fertilizing potential of a given semen sample. However, separated sperm subpopulations have never been tested for their fertilizing ability yet. Here, we have compared sperm quality parameters and the fertilizing ability of sperm subpopulations separated by the CCCD process from ram semen samples maintained at 20 degrees C or cooled down to 5 degrees C. Total and progressive sperm motility was evaluated by computer-assisted analysis using a CASA system and membrane integrity was evaluated by flow cytometry by staining with CFDA/Pl. The capacitation state, staining with chlortetracycline, and apoptosis-related markers, such as phosphatidylserine (PS) translocation detected with Annexin V. and DNA damage detected by the TUNEL assay, were determined by fluorescence microscopy. Additionally, the fertilizing ability of the fractionated subpopulations was comparative assessed by zona binding assay (ZBA). CCCD analysis revealed that the number of spermatozoa displaying membrane and DNA alterations was higher in samples chilled at 5 degrees C than at 20 degrees C. which can be reflected in the displacement to the left of the CCCD profiles. The spermatozoa located in the central and right chambers (more hydrophobic) presented higher values (P<0.01) of membrane integrity, lower PS translocation (P<0.05) and DNA damage (P<0.001) than those in the left part of the profile, where apoptotic markers were significantly increased and the proportion of viable non-capacitated sperm was reduced. We have developed a new protocol to recover spermatozoa from the CCCD fractions and we proved that these differences were related with the fertilizing ability determined by ZBA, because we found that the number of spermatozoa attached per oocyte was significantly higher for spermatozoa recovered from the central and right chambers, in both types of samples. This is the first time, to our knowledge that sperm recovered from a two-phase partition procedure are used for fertilization assays. These results open up new possibilities for using specific subpopulations of sperm for artificial insemination or in vitro fertilization, not only regarding better sperm quality but also certain characteristics such as subpopulations enriched in spermatozoa bearing X or Y chromosome that we have already isolated or any other feature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
On the basis of the full analytical solution of the overall unitary dynamics, the time evolution of entanglement is studied in a simple bipartite model system evolving unitarily from a pure initial state. The system consists of two particles in one spatial dimension bound by harmonic forces and having its free center of mass initially localized in space in a minimum uncertainty wavepacket. The existence of such initial states in which the bound particles are not entangled is discussed. Galilean invariance of the system ensures that the dynamics of entanglement between the two particles is independent of the wavepacket mean momentum. In fact, as shown, it is driven by the dispersive center of mass free dynamics, and evolves in a time scale that depends on the interparticle interaction in an essential way.
Resumo:
This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.
Resumo:
The present study aimed to evaluate the photoprotective effects of cosmetic formulations containing a dispersion of liposome with magnesium ascorbyl phosphate (MAP), alpha-lipoic acid (ALA) and kinetin, as well as their effects on the hydration and viscoelastic skin properties. The photoprotection was determined in vitro (antioxidant activity) and in vivo on UV-irradiated hairless mouse skin. The hydration effects were performed with the application of the formulations under study on the forearm of human volunteers and skin conditions were analyzed before and after a single application and daily applications during 4 weeks in terms of transepidermal water loss (TEWL), skin moisture and viscoelastic properties. The raw material under study possessed free-radical scavenging activity and the formulation with it protected hairless mouse skin barrier function against UV damage. After 4 weeks of application on human skin, the formulation under study enhanced stratum corneum skin moisture and also showed hydration effects in deeper layers of the skin. Thus, it can be concluded that the cosmetic formulation containing a dispersion of liposome with MAP, ALA and kinetin under study showed photoprotective effects in skin barrier function as well as pronounced hydration effects on human skin, which suggests that this dispersion has potential antiaging effects.