3 resultados para animal toxins
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Sea anemones are known to contain a wide diversity of biologically active peptides, mostly unexplored according to recent peptidomic and transcriptomic studies. In the present work, the neurotoxic fractions from the exudates of Stichodactyla helianthus and Bunodosoma granulifera were analyzed by reversed-phase chromatography and mass spectrometry. The first peptide fingerprints of these sea anemones were assessed, revealing the largest number of peptide components (156) so far found in sea anemone species, as well as the richer peptide diversity of B. granulifera in relation to S. helianthus. The transcriptomic analysis of B. granulifera, performed by massive cDNA sequencing with 454 pyrosequencing approach allowed the discovery of five new APETx-like peptides (U-AITX-Bg1a-e - including the full sequences of their precursors for four of them), which together with type 1 sea anemone sodium channel toxins constitute a very distinguishable feature of studied sea anemone species belonging to genus Bunodosoma. The molecular modeling of these new APETx-like peptides showed a distribution of positively charged and aromatic residues in putative contact surfaces as observed in other animal toxins. On the other hand, they also showed variable electrostatic potentials, thus suggesting a docking onto their targeted channels in different spatial orientations. Moreover several crab paralyzing toxins (other than U-AITX-Bg1a-e), which induce a variety of symptoms in crabs, were isolated. Some of them presumably belong to new classes of crab-paralyzing peptide toxins, especially those with molecular masses below 2 kDa, which represent the smallest peptide toxins found in sea anemones. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Crotamine, a 5-kDa peptide, possesses a unique biological versatility. Not only has its cell-penetrating activity become of clinical interest but, moreover, its potential selective antitumor activity is of great pharmacological importance. In the past, several studies have attempted to elucidate the exact molecular target responsible for the crotamine-induced skeletal muscle spasm. The aim of this study was to investigate whether crotamine affects voltage-gated potassium (K-V) channels in an effort to explain its in vivo effects. Crotamine was studied on ion channel function using the two-electrode voltage clamp technique on 16 cloned ion channels (12 K-V channels and 4 Na-V channels), expressed in Xenopus laevis oocytes. Crotamine selectively inhibits K-V 1.1, K-V 1.2, and K-V 1.3 channels with an IC50 of similar to 300 nM, and the key amino acids responsible for this molecular interaction are suggested. Our results demonstrate for the first time that the symptoms, which are observed in the typical crotamine syndrome, may result from the inhibition of K-V channels. The ability of crotamine to inhibit the potassium current through K-V channels unravels it as the first snake peptide with the unique multifunctionality of cell-penetrating and antitumoral activity combined with K-V channel-inhibiting properties. This new property of crotamine might explain some experimental observations and opens new perspectives on pharmacological uses.
Resumo:
Surprisingly little is known of the toxic arsenal of cnidarian nematocysts compared to other venomous animals. Here we investigate the toxins of nematocysts isolated from the jellyfish Olindias sambaquiensis. A total of 29 unique ms/ms events were annotated as potential toxins homologous to the toxic proteins from diverse animal phyla, including conesnails, snakes, spiders, scorpions, wasp, bee, parasitic worm and other Cnidaria. Biological activities of these potential toxins include cytolysins, neurotoxins, phospholipases and toxic peptidases. The presence of several toxic enzymes is intriguing, such as sphingomyelin phosphodiesterase B (SMase B) that has only been described in certain spider venoms, and a prepro-haystatin P-IIId snake venom metalloproteinase (SVMP) that activates coagulation factor X, which is very rare even in snake venoms. Our annotation reveals sequence orthologs to many representatives of the most important superfamilies of peptide venoms suggesting that their origins in higher organisms arise from deep eumetazoan innovations. Accordingly, cnidarian venoms may possess unique biological properties that might generate new leads in the discovery of novel pharmacologically active drugs.