4 resultados para algebra di Lie gruppi risolubili nilpotenti

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generalizations of Lie algebras appeared in the modern mathematics and mathematical physics. In this paper we consider recent developments and remaining open problems on the subject. Some of that developments have been influenced by lectures given by Professor Jaime Keller in his research seminar. The survey includes Lie superalgebras, color Lie algebras, Lie algebras in symmetric categories, free Lie tau-algebras, and some generalizations with non-associative enveloping algebras: tangent algebras to analytic loops, bialgebras and primitive elements, non-associative Hopf algebras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe (braided-) commutative algebras with non-degenerate multiplicative form in certain braided monoidal categories, corresponding to abelian metric Lie algebras (so-called Drinfeld categories). We also describe local modules over these algebras and classify commutative algebras with a finite number of simple local modules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove that the simple Lie algebras constructed by G. Jurman (2004) in 121 are isomorphic to Hamiltonian algebras. As a corollary we answer all questions formulated in G. Jurman (2004) [2] about isomorphisms of these algebras. (C) 2012 Elsevier Inc. All rights reserved.